Skip to main content
Log in

Fabrication of superhydrophobic coating from non-fluorine siloxanes via a one-pot sol–gel method

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

To fabricate a superhydrophobic and durable coating, non-fluorine siloxane solution for the coating was successfully synthesized via a facile one-pot method. The wetting properties and morphology of coatings with different concentration and adding time of additives were studied. Under condition of low water content, the coatings’ superhydrophobicity was improved with the increasing amount of ammonia content, water content, and low-surface-energy material (HTMS) content. However, too more ammonia or water or HTMS would sacrifice the coating’s integrality and lead to the cracking of it. The obtained coatings showed good superhydrophobicity and anti-UV property on plain and even curved substrates, including glass, metal, and polymer. Contact angle and sliding angle of the coating could reach 158° and 1.8°, respectively. What is more, coating on PET filter could be used for oil/water separation with an efficiency of 80%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Wang S, Jiang L (2007) Definition of superhydrophobic states. Adv Mater 19(21):3423–3424

    Article  CAS  Google Scholar 

  2. Marmur A (2004) The lotus effect: superhydrophobicity and metastability. Langmuir 20(9):3517–3519

    Article  CAS  Google Scholar 

  3. Wang Y, Xue J, Wang Q, Chen Q, Ding J (2013) Verification of icephobic/anti-icing properties of a superhydrophobic surface. ACS Appl Mater Interfaces 5(8):3370–3381

    Article  CAS  Google Scholar 

  4. Wang Z, Li Q, She Z, Chen F, Li L (2012) Low-cost and large-scale fabrication method for an environmentally-friendly superhydrophobic coating on magnesium alloy. J Mater Chem 22(9):4097–4105

    Article  CAS  Google Scholar 

  5. Xiu Y, Hess DW, Wong CP (2008) UV and thermally stable superhydrophobic coatings from sol–gel processing. J Colloid Interface Sci 326(2):465–470

    Article  CAS  Google Scholar 

  6. Tian Y, Guo K, Bian X, Sun J (2017) Durable and room-temperature curable superhydrophobic composite coating on nitrocellulose lacquer. Surf Coat Technol 325:444–450

    Article  Google Scholar 

  7. Ju J, Xiao K, Yao X, Bai H, Jiang L (2013) Bioinspired conical copper wire with gradient wettability for continuous and efficient fog collection. Adv Mater 25(41):5937–5942

    Article  CAS  Google Scholar 

  8. Zimmermann J, Reifler FA, Schrade U, Artus GRJ, Seeger S (2007) Long term environmental durability of a superhydrophobic silicone nanofilament coating. Colloids Surf A Physicochem Eng Asp 302(1–3):234–240

    Article  CAS  Google Scholar 

  9. Chen K, Zhou S, Yang S, Wu L (2015) Fabrication of all-water-based self-repairing superhydrophobic coatings based on UV-responsive microcapsules. Adv Funct Mater 25(7):1035–1041

    Article  CAS  Google Scholar 

  10. Zheng S, Li C, Fu Q et al (2016) Development of stable superhydrophobic coatings on aluminum surface for corrosion-resistant, self-cleaning, and anti-icing applications. Mater Des 93:261–270

    Article  CAS  Google Scholar 

  11. Su B, Tian Y, Jiang L (2016) Bioinspired interfaces with superwettability: from materials to chemistry. J Am Chem Soc 138(6):1727–1748

    Article  CAS  Google Scholar 

  12. Blossey R (2003) Self-cleaning surfaces—virtual realities. Nat Mater 2(5):301–306

    Article  CAS  Google Scholar 

  13. Feng X, Jiang L (2006) Design and creation of superwetting/antiwetting surfaces. Adv Mater 18(23):3063–3078

    Article  CAS  Google Scholar 

  14. Gao L, McCarthy TJ (2006) The “lotus effect” explained: two reasons why two length scales of topography are important. Langmuir 22(7):2966–2967

    Article  CAS  Google Scholar 

  15. Yan YY, Gao N, Barthlott W (2011) Mimicking natural superhydrophobic surfaces and grasping the wetting process: a review on recent progress in preparing superhydrophobic surfaces. Adv Colloid Interface Sci 169(2):80–105

    Article  CAS  Google Scholar 

  16. Deng X, Mammen L, Butt H-J, Vollmer D (2012) Candle soot as a template for a transparent robust superamphiphobic coating. Science 335(6064):67–70

    Article  CAS  Google Scholar 

  17. Zhang L, Wu J, Wang Y, Long Y, Zhao N, Xu J (2012) Combination of bioinspiration: a general route to superhydrophobic particles. J Am Chem Soc 134(24):9879–9881

    Article  CAS  Google Scholar 

  18. Du X, Liu X, Chen H, He J (2009) Facile fabrication of raspberry-like composite nanoparticles and their application as building blocks for constructing superhydrophilic coatings. J Phys Chem C 113(21):9063–9070

    Article  CAS  Google Scholar 

  19. Cortese B, D’Amone S, Manca M, Viola I, Cingolani R, Gigli G (2008) Superhydrophobicity due to the hierarchical scale roughness of PDMS surfaces. Langmuir 24(6):2712–2718

    Article  CAS  Google Scholar 

  20. Lv T, Cheng Z, Zhang E, Kang H, Liu Y, Jiang L (2016) Self-restoration of superhydrophobicity on shape memory polymer arrays with both crushed microstructure and damaged surface chemistry. Small 13(4):1503402

    Article  Google Scholar 

  21. Li F, Du M, Zheng Q (2016) Dopamine/silica nanoparticle assembled, microscale porous structure for versatile superamphiphobic coating. ACS Nano 10(2):2910–2921

    Article  CAS  Google Scholar 

  22. Koch K, Bhushan B, Jung YC, Barthlott W (2009) Fabrication of artificial Lotus leaves and significance of hierarchical structure for superhydrophobicity and low adhesion. Soft Matter 5(7):1386–1393

    Article  CAS  Google Scholar 

  23. Ma M, Mao Y, Gupta M, Gleason KK, Rutledge GC (2005) Superhydrophobic fabrics produced by electrospinning and chemical vapor deposition. Macromolecules 38(23):9742–9748

    Article  CAS  Google Scholar 

  24. Lu X, Wang C, Wei Y (2009) One-dimensional composite nanomaterials: synthesis by electrospinning and their applications. Small 5(21):2349–2370

    Article  CAS  Google Scholar 

  25. Wu L, Li L, Li B, Zhang J, Wang A (2015) Magnetic, durable, and superhydrophobic polyurethane@Fe3O4@SiO2@fluoropolymer sponges for selective oil absorption and oil/water separation. ACS Appl Mater Interfaces 7(8):4936–4946

    Article  CAS  Google Scholar 

  26. Pereira C, Alves C, Monteiro A et al (2011) Designing novel hybrid materials by one-pot co-condensation: from hydrophobic mesoporous silica nanoparticles to superamphiphobic cotton textiles. ACS Appl Mater Interfaces 3(7):2289–2299

    Article  CAS  Google Scholar 

  27. Li F, Du M, Zheng Z, Song Y, Zheng Q (2015) A facile, multifunctional, transparent, and superhydrophobic coating based on a nanoscale porous structure spontaneously assembled from branched silica nanoparticles. Adv Mater Interfaces 2(13):1500201

    Article  Google Scholar 

  28. Zhu T, Cai C, Guo J, Wang R, Zhao N, Xu J (2017) Ultra water repellent polypropylene surfaces with tunable water adhesion. ACS Appl Mater Interfaces 9(11):10224–10232

    Article  CAS  Google Scholar 

  29. Xie Q, Xu J, Feng L et al (2004) Facile creation of a super-amphiphobic coating surface with bionic microstructure. Adv Mater 16(4):302–305

    Article  CAS  Google Scholar 

  30. Osborne JH (2001) Observations on chromate conversion coatings from a sol–gel perspective. Prog Org Coat 41(4):280–286

    Article  CAS  Google Scholar 

  31. Poovarodom S, Hosseinpour D, Berg JC (2008) Effect of particle aggregation on the mechanical properties of a reinforced organic–inorganic hybrid sol–gel composite. Ind Eng Chem Res 47(8):2623–2629

    Article  CAS  Google Scholar 

  32. Simpson JT, Hunter SR, Aytug T (2015) Superhydrophobic materials and coatings: a review. Rep Prog Phys 78(8):086501

    Article  Google Scholar 

  33. Bayer I (2017) On the durability and wear resistance of transparent superhydrophobic coatings. Coatings 7(12):12

    Article  Google Scholar 

  34. Stöber W, Fink A, Bohn E (1968) Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci 26(1):62–69

    Article  Google Scholar 

  35. Diré S, Babonneau F, Sanchez C, Livage J (1992) Sol–gel synthesis of siloxane oxide hybrid coatings [Si(CH3)2O·MOX–M=Si, Ti, Zr, Al] with luminescent properties. J Mater Chem 2(2):239–244

    Article  Google Scholar 

  36. Crivello JV, Mao Z (1997) Synthesis of novel multifunctional siloxane oligomers using sol–gel techniques and their photoinitiated cationic polymerization. Chem Mater 9(7):1554–1561

    Article  CAS  Google Scholar 

  37. Buckley AM, Greenblatt M (1994) The sol–gel preparation of silica gels. J Chem Edu 71(7):599–602

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Jin.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (MP4 11378 kb)

Supplementary material 2 (MP4 9805 kb)

Supplementary material 3 (MP4 16144 kb)

Supplementary material 4 (MP4 12004 kb)

Supplementary material 5 (MP4 11837 kb)

Supplementary material 6 (MP4 597 kb)

Supplementary material 7 (DOCX 1837 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Chen, Y., Jin, T. et al. Fabrication of superhydrophobic coating from non-fluorine siloxanes via a one-pot sol–gel method. J Mater Sci 53, 11253–11264 (2018). https://doi.org/10.1007/s10853-018-2348-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2348-7

Keywords

Navigation