Skip to main content
Log in

Preparation of carbon nanotube/copper/carbon fiber hierarchical composites by electrophoretic deposition for enhanced thermal conductivity and interfacial properties

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A facile electrophoretic deposition method was proposed to deposit copper (Cu) and carbon nanotubes (CNTs) on the surface of carbon fiber (CF) to improve the thermal conductivity and interfacial properties of carbon fiber-reinforced polymer (CFRP) composites. Surface morphologies, crystallographic properties, thermal conductivity, interlaminar shear strength (ILSS) and element distribution of the composites were characterized by scanning electron microscopy (SEM), X-ray diffraction, thermal constant analysis, short-beam bending tests and SEM energy-dispersive X-ray diffractometer (SEM–EDX), respectively. The results indicate that the presence of Cu and CNTs generated networks and bridges with each other, which produced continuous heat conduction pathways and significantly enhanced both the specific surface area and roughness of the fiber surface. These pathways obviously promoted an improvement in the thermal and interfacial properties. The thermal conductivity and ILSS of the CNTs–Cu–CF/epoxy composites increased by 292 and 39.5%, respectively, compared with CF/epoxy composites. Therefore, this method is anticipated to be utilized in the future fabrication of multifunctional CFRP composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Chen L, Sun Y-Y, Lin J, Du X-Z, Wei G-S, He S-J, Nazarenko S (2015) Modeling and analysis of synergistic effect in thermal conductivity enhancement of polymer composites with hybrid filler. Int J Heat Mass Tran 81:457–464. https://doi.org/10.1016/j.ijheatmasstransfer.2014.10.051

    Article  Google Scholar 

  2. Teng C-C, Ma C-CM, Chiou K-C, Lee T-M, Shih Y-F (2011) Synergetic effect of hybrid boron nitride and multi-walled carbon nanotubes on the thermal conductivity of epoxy composites. Mater Chem Phys 126(3):722–728. https://doi.org/10.1016/j.matchemphys.2010.12.053

    Article  Google Scholar 

  3. Yu G-C, Wu L-Z, Feng L-J, Yang W (2016) Thermal and mechanical properties of carbon fiber polymer-matrix composites with a 3D thermal conductive pathway. Compos Struct 149:213–219. https://doi.org/10.1016/j.compstruct.2016.04.010

    Article  Google Scholar 

  4. Bo Li, Li RL, Xie YX (2017) Properties and effect of preparation method of thermally conductive polypropylene/aluminum oxide composite. J Mater Sci 52:2524–2533. https://doi.org/10.1007/s10853-016-0546-8

    Article  Google Scholar 

  5. Kumar Sunil, Singh Kedar (2012) Simultaneous measurements of thermal conductivity and thermal diffusivity of Se90 − xTe5Sn5Inx (x = 0, 3, 6, and 9) multicomponent chalcogenide glasses. J Mater Sci 47:3949–3952. https://doi.org/10.1007/s10853-011-6244-7

    Article  Google Scholar 

  6. Li G, Tian X, Xu X, Zhou C, Wu J, Li Q, Zhang L, Yang F, Li Y (2017) Fabrication of robust and highly thermally conductive nanofibrillated cellulose/graphite nanoplatelets composite papers. Compos Sci Technol 138:179–185. https://doi.org/10.1016/j.compscitech.2016.12.001

    Article  Google Scholar 

  7. Yu J, Choi HK, Kim HS, Kim SY (2016) Synergistic effect of hybrid graphene nanoplatelet and multi-walled carbon nanotube fillers on the thermal conductivity of polymer composites and theoretical modeling of the synergistic effect. Compos Part A-appl S 88:79–85. https://doi.org/10.1016/j.compositesa.2016.05.022

    Article  Google Scholar 

  8. Zhou TY, Tsui GCP, Liang JZ, Zou SY, Tang CY, Mišković-Stanković V (2016) Thermal properties and thermal stability of PP/MWCNT composites. Compos Prat B-eng 90:107–114. https://doi.org/10.1016/j.compositesb.2015.12.013

    Article  Google Scholar 

  9. Pashayi K, Fard HR, Lai F, Iruvanti S, Plawsky J, Borca-Tasciuc T (2012) High thermal conductivity epoxy-silver composites based on self-constructed nanostructured metallic networks. J Appl Phys 111(10):104310. https://doi.org/10.1063/1.4716179

    Article  Google Scholar 

  10. Zhang Y, Li JW, Zhao LL, Wang XT (2015) Optimisation of high thermal conductivity Al/diamond composites produced by gas pressure infiltration by controlling infiltration temperature and pressure. J Mater Sci 50:688–696. https://doi.org/10.1007/s10853-014-8628-y

    Article  Google Scholar 

  11. Yu S, Lee JW, Han TH, Park C, Kwon Y, Hong SM, Koo CM (2013) Copper shell networks in polymer composites for efficient thermal conduction. ACS Appl Mater Inter 5(22):11618–11622. https://doi.org/10.1021/am4030406

    Article  Google Scholar 

  12. Qian R, Yu J, Wu C, Zhai X, Jiang P (2013) Alumina-coated graphene sheet hybrids for electrically insulating polymer composites with high thermal conductivity. RSC Adv 3(38):17373. https://doi.org/10.1039/c3ra42104j

    Article  Google Scholar 

  13. Yu S, Park BI, Park C, Hong SM, Han TH, Koo CM (2014) RTA-treated carbon fiber/copper core/shell hybrid for thermally conductive composites. ACS Appl Mater Inter 6(10):7498–7503. https://doi.org/10.1021/am500871b

    Article  Google Scholar 

  14. Yang S-Y, Lin W-N, Huang Y-L, Tien H-W, Wang J-Y, Ma C-CM, Li S-M, Wang Y-S (2011) Synergetic effects of graphene platelets and carbon nanotubes on the mechanical and thermal properties of epoxy composites. Carbon 49(3):793–803. https://doi.org/10.1016/j.carbon.2010.10.014

    Article  Google Scholar 

  15. Yang X, Zhan Y, Yang J, Zhong J, Zhao R, Liu X (2011) Synergetic effect of cyanogen functionalized carbon nanotube and graphene on the mechanical and thermal properties of poly (arylene ether nitrile). J Polym Res 19:9806. https://doi.org/10.1007/s10965-011-9806-0

    Article  Google Scholar 

  16. Liu L, Xiao LH, Zhang XP, Li M, Chang YJ, Shang L, Ao YH (2015) Improvement of the thermal conductivity and friction performance of poly(ether ether ketone)/carbon fiber laminates by addition of graphene. RSC Adv 5:57853–57859. https://doi.org/10.1039/c5ra10722a

    Article  Google Scholar 

  17. Luo W, Liu Q, Li Y, Zhou S, Zou H, Liang M (2016) Enhanced mechanical and tribological properties in polyphenylene sulfide/polytetrafluoroethylene composites reinforced by short carbon fiber. Compos Prat B-eng 91:579–588. https://doi.org/10.1016/j.compositesb.2016.01.036

    Article  Google Scholar 

  18. Yue ZR, Liu C, Vakil Ahmad (2017) Solvated mesophase pitch-based carbon fibers: thermal-oxidative stabilization of the spun fiber. J Mater Sci 52:8176–8187. https://doi.org/10.1007/s10853-017-1024-7

    Article  Google Scholar 

  19. Maiti UN, Maiti S, Das NS, Chattopadhyay KK (2011) Hierarchical graphene nanocones over 3D platform of carbon fabrics: a route towards fully foldable graphene based electron source. Nanoscale 3(10):4135–4141. https://doi.org/10.1039/c1nr10383k

    Article  Google Scholar 

  20. Wang P, Yang J, Liu W, Tang X-Z, Zhao K, Lu X, Xu S (2017) Tunable crack propagation behavior in carbon fiber reinforced plastic laminates with polydopamine and graphene oxide treated fibers. Mater Desing 113:68–75. https://doi.org/10.1016/j.matdes.2016.10.013

    Article  Google Scholar 

  21. Kim KJ, Kim J, Yu W-R, Youk JH, Lee J (2013) Improved tensile strength of carbon fibers undergoing catalytic growth of carbon nanotubes on their surface. Carbon 54:258–267. https://doi.org/10.1016/j.carbon.2012.11.037

    Article  Google Scholar 

  22. Qin W, Vautard F, Drzal LT, Yu J (2015) Mechanical and electrical properties of carbon fiber composites with incorporation of graphene nanoplatelets at the fiber-matrix interphase. Compos Prat B-eng 69:335–341. https://doi.org/10.1016/j.compositesb.2014.10.014

    Article  Google Scholar 

  23. Zhang RL, Zhang J, Wang CG, Li FH, Liu L, Cui HZ (2016) Communication-formation of a hierarchical reinforcing carbon fiber through co-grafting graphene Oxide and carbon nanotube. ECS J Solid State Sc 5(10):M127–M129. https://doi.org/10.1149/2.0201610jss

    Article  Google Scholar 

  24. Veedu VP, Cao A, Li X, Ma K, Soldano C, Kar S, Ajayan PM, Ghasemi-Nejhad MN (2006) Multifunctional composites using reinforced laminae with carbon-nanotube forests. Nat Mater 5(6):457–462. https://doi.org/10.1038/nmat1650

    Article  Google Scholar 

  25. Mathur RB, Chatterjee S, Singh BP (2008) Growth of carbon nanotubes on carbon fibre substrates to produce hybrid/phenolic composites with improved mechanical properties. Compos Sci Technol 68(7–8):1608–1615. https://doi.org/10.1016/j.compscitech.2008.02.020

    Article  Google Scholar 

  26. Yao HW, Sui SH, Zhao ZB, Xu ZW, Chen L, Deng H (2016) Optimization of interfacial microstructure and mechanical properties of carbon fiber/epoxy composites via carbon nanotube sizing. Appl Surf Sci 347:583–590. https://doi.org/10.1016/j.apsusc.2015.04.146

    Article  Google Scholar 

  27. Zhang RL, Gao B, Ma QH, Zhang J, Cui HZ, Liu L (2016) Directly grafting graphene oxide onto carbon fiber and the effect on the mechanical properties of carbon fiber composites. Mater Des 93:364–369. https://doi.org/10.1016/j.matdes.2016.01.003

    Article  Google Scholar 

  28. Chen J, Zhao D, Jin X, Wang C, Wang D, Ge H (2014) Modifying glass fibers with graphene oxide: Towards high-performance polymer composites. Compos Sci Technol 97:41–45. https://doi.org/10.1016/j.compscitech.2014.03.023

    Article  Google Scholar 

  29. Laachachi A, Vivet A, Nouet G, Ben Doudou B, Poilâne C, Chen J, Bo bai J, Ayachi MH (2008) A chemical method to graft carbon nanotubes onto a carbon fiber. Mater Lett 62(3):394–397. https://doi.org/10.1016/j.matlet.2007.05.044

    Article  Google Scholar 

  30. Deng C, Jiang J, Liu F, Fang L, Wang J, Li D, Wu J (2015) Effects of electrophoretically deposited graphene oxide coatings on interfacial properties of carbon fiber composite. J Mater Sci 50(17):5886–5892. https://doi.org/10.1007/s10853-015-9138-2

    Article  Google Scholar 

  31. Mahmood H, Tripathi M, Pugno N, Pegoretti A (2016) Enhancement of interfacial adhesion in glass fiber/epoxy composites by electrophoretic deposition of graphene oxide on glass fibers. Compos Sci Technol 126:149–157. https://doi.org/10.1016/j.compscitech.2016.02.016

    Article  Google Scholar 

  32. Chen L, Jin H, Xu ZW, Li JL, Guo QW, Shan MJ, Yang CY, Wang Z, Mai W, Cheng BW (2015) Role of a gradient interface layer in interfacial enhancement of carbon fiber/epoxy hierarchical composites. J Mater Sci 50(1):112–121. https://doi.org/10.1007/s10853-014-8571-y

    Article  Google Scholar 

  33. Ehlert GJ, Lin YR, Sodano HA (2011) Carboxyl functionalization of carbon fibers through a grafting reaction that preserves fiber tensile strength. Carbon 49(13):4246–4255. https://doi.org/10.1016/j.carbon.2011.05.057

    Article  Google Scholar 

  34. Zhang XQ, Fan XY, Yan C, Li HZ, Zhu YD, Li XT, Yu LP (2012) Interfacial microstructure and properties of carbon fiber composites modified with graphene oxide. ACS Appl Mater Inter 4(3):1543–1552. https://doi.org/10.1021/am201757v

    Article  Google Scholar 

  35. Zhao ZB, Teng KY, Li N, Li XJ, Xu ZW, Chen L, Niu JR, Fu HJ, Zhao LH, Liu Y (2017) Mechanical, thermal and interfacial performances of carbon fiber reinforced composites flavored by carbon nanotube in matrix/interface. Compos Struct 159:761–772. https://doi.org/10.1016/j.compstruct.2016.10.022

    Article  Google Scholar 

  36. Guo JH, Lu CX, An F (2012) Effect of electrophoretically deposited carbon nanotubes on the interface of carbon fiber reinforced epoxy composite. J Mater Sci 47(6):2831–2836. https://doi.org/10.1007/s10853-011-6112-5

    Article  Google Scholar 

  37. Bekyarova E, Thostenson ET, Yu A, Kim H, Gao J, Tang J, Hahn HT, Chou TW, Itkis ME, Haddon RC (2007) Multiscale carbon nanotube-carbon fiber reinforcement for advanced epoxy composites. Langmuir 23(7):3970–3974. https://doi.org/10.1021/la062743p

    Article  Google Scholar 

  38. Zhao Z, Teng K, Li N, Li X, Xu Z, Chen L, Niu J, Fu H, Zhao L, Liu Y (2017) Mechanical, thermal and interfacial performances of carbon fiber reinforced composites flavored by carbon nanotube in matrix/interface. Compos Struct 159:761–772. https://doi.org/10.1016/j.compstruct.2016.10.022

    Article  Google Scholar 

  39. Zhang J, Zhuang R, Liu J, Mäder E, Heinrich G, Gao S (2010) Functional interphases with multi-walled carbon nanotubes in glass fibre/epoxy composites. Carbon 48(8):2273–2281. https://doi.org/10.1016/j.carbon.2010.03.001

    Article  Google Scholar 

  40. Milowska KZ, Ghorbani-Asl M, Burda M, Wolanicka L, Catic N, Bristowe PD, Koziol KKK (2017) Breaking the electrical barrier between copper and carbon nanotubes. Nanoscale 9(24):8458–8469. https://doi.org/10.1039/c7nr02142a

    Article  Google Scholar 

  41. Sundaram R, Yamada T, Hata K, Sekiguchi A (2017) Electrical performance of lightweight CNT–Cu composite wires impacted by surface and internal Cu spatial distribution. Sci Rep 7(1):9267. https://doi.org/10.1038/s41598-017-09279-x

    Article  Google Scholar 

  42. Lv P, Tan XW, Yu KH, Zheng RL, Zheng JJ, Wei W (2016) Super-elastic graphene/carbon nanotube aerogel: a novel thermal interface material with highly thermal transport properties. Carbon 99:222–228. https://doi.org/10.1016/j.carbon.2015.12.026

    Article  Google Scholar 

  43. Peng J, Cheng Q (2017) High-performance nanocomposites inspired by nature. Adv Mater 45(29):1–16. https://doi.org/10.1002/adma.201702959

    Google Scholar 

  44. Chaudhary KT, Rizvi ZH, Bhatti KA, Ali J, Yupapin PP (2013) Multiwalled carbon nanotube synthesis using arc discharge with hydrocarbon as feedstock. J NanoMater 2013:1–13. https://doi.org/10.1155/2013/105145

    Article  Google Scholar 

  45. Chen H, Ginzburg VV, Yang J, Yang Y, Liu W, Huang Y, Du L, Chen B (2016) Thermal conductivity of polymer-based composites: fundamentals and applications. Prog Polym Sci 59:41–85. https://doi.org/10.1016/j.progpolymsci.2016.03.001

    Article  Google Scholar 

  46. Datsyuk V, Trotsenko S, Reich S (2013) Carbon-nanotube-polymer nanofibers with high thermal conductivity. Carbon 52:605–620. https://doi.org/10.1016/j.carbon.2012.09.045

    Article  Google Scholar 

  47. Yao X, Gao X, Jiang J, Xu C, Deng C, Wang J (2018) Comparison of carbon nanotubes and graphene oxide coated carbon fiber for improving the interfacial properties of carbon fiber/epoxy composites. Compos Prat B-eng 132:170–177. https://doi.org/10.1016/j.compositesb.2017.09.012

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 51603020, 21644003, 21704006).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Linghan Xiao or Yuhui Ao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, F., Liu, L., Li, M. et al. Preparation of carbon nanotube/copper/carbon fiber hierarchical composites by electrophoretic deposition for enhanced thermal conductivity and interfacial properties. J Mater Sci 53, 8108–8119 (2018). https://doi.org/10.1007/s10853-018-2115-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2115-9

Keywords

Navigation