Skip to main content
Log in

Enhanced charge separation and oxidation kinetics by loading Pt nanoparticles with hydrogenated TiO2 nanotubes

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Charge separation and oxidation kinetics are both critical for solar energy conversion in photoelectrochemical cell, but it is difficult to enhance simultaneously by a semiconductor. Here, the hydrogenated TiO2 loaded by Pt nanoparticles with improved charge separation and oxidation kinetics photoanodes are developed, characterized, and tested. The TiO2 nanotubes are prepared by hydrothermal of Ti foils and used as substrates for hydrogenation and loaded by Pt through photodeposition. Ascribe to the synergetic of hydroxylated surface and Pt nanoparticles, the photocurrent of Pt/H:TiO2 is enhanced from 0.052 (TiO2) to 0.098 mA/cm2 at 1.0 V versus RHE for water oxidation and almost increased 1.3 times for sulfite oxidation. Further, the electrons’ transport time has been reduced 20%, and the incident photon-to-electron conversion efficiency for Pt/H:TiO2 has been increased by 2.5-fold for water oxidation under 350 nm illumination at 1.0 V versus RHE. The charge separation and oxidation kinetics efficiencies of Pt/H:TiO2 are improved to 62.2 and 39.9% compared with pristine TiO2 (54.2 and 27.6%) at 1.0 V versus RHE. The origin of the enhanced photoelectrochemical performances for Pt/H:TiO2 is due to the hydroxylated surface and the absorption of plasmon resonance by Pt nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Cai J, Wu M, Wang Y, Zhang H, Meng M, Tian Y, Li X, Zhang J, Zheng L, Gong J (2017) Synergetic enhancement of light harvesting and charge separation over surface-disorder-engineered TiO2 photonic crystals. Chem 2:877–892

    Article  Google Scholar 

  2. Naldoni A, Allieta M, Santangelo S, Marelli M, Fabbri F, Cappelli S, Bianchi CL, Psaro R, Santo VD (2012) Effect of nature and location of defects on bandgap narrowing in black TiO2 nanoparticles. J Am Chem Soc 134:7600–7603

    Article  Google Scholar 

  3. Luo JS, Im JH, Mayer MT, Schreier M, Nazeeruddin MK, Park NG, Tilley SD, Fan HJ, Grätzel M (2014) Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts. Science 345:1593–1596

    Article  Google Scholar 

  4. Lang X, Chen X, Zhao J (2014) Heterogeneous visible light photocatalysis for selective organic transformations. Chem Soc Rev 43:473–486

    Article  Google Scholar 

  5. Tada H, Negishi R, Naya SI, Kobayashi H (2017) Multi-electron oxygen reduction by a hybrid visible-light-photocatalyst consisting of metal-oxide semiconductor and self-assembled biomimetic complex. Angew Chem 129:10483–10487

    Article  Google Scholar 

  6. Natarajan K, Natarajan TS, Kureshy RI, Bajaj HC, Joc WK, Tayade RJ (2015) Photocatalytic H2 production using semiconductor nanomaterials via water splitting-an overview. Adv Mater Res 1116:130–156

    Article  Google Scholar 

  7. Pendlebury SR, Cowan AJ, Barroso M, Sivula K, Ye J, Grätzel M, Klug DR, Tang J, Durrant JR (2012) Correlating long-lived photogenerated hole populations with photocurrent densities in hematite water oxidation photoanodes. Energy Environ Sci 5:6304–6312

    Article  Google Scholar 

  8. Kim TW, Ping Y, Galli GA, Choi KS (2015) Simultaneous enhancements in photon absorption and charge transport of bismuth vanadate photoanodes for solar water splitting. Nat Commun 6:8769

    Article  Google Scholar 

  9. Rao PM, Cai L, Liu C, Cho IS, Lee CH, Weisse JM, Yang P, Zheng X (2014) Simultaneously efficient light absorption and charge separation in WO3/BiVO4 core/shell nanowire photoanode for photoelectrochemical water oxidation. Nano Lett 14:1099–1105

    Article  Google Scholar 

  10. Chang X, Wang T, Zhang P, Zhang J, Li A, Gong J (2015) Enhanced surface reaction kinetics and charge separation of p–n heterojunction Co3O4/BiVO4 photoanodes. J Am Chem Soc 137:8356–8359

    Article  Google Scholar 

  11. Park Y, McDonald KJ, Choi KS (2013) Progress in bismuth vanadate photoanodes for use in solar water oxidation. Chem Soc Rev 42:2321–2337

    Article  Google Scholar 

  12. Song J, Zheng M, Yuan X, Li Q, Wang F, Ma L, You Y, Liu S, Liu P, Jiang D, Ma L, Shen W (2017) Electrochemically induced Ti3+ self-doping of TiO2 nanotube arrays for improved photoelectrochemical water splitting. J Mater Sci 52:6976–6986. https://doi.org/10.1007/s10853-017-0930-z

    Article  Google Scholar 

  13. Kalisz M, Grobelny M, Kaczmarek D, Domaradzki J, Mazur M, Wojcieszak D (2017) Comparison of structural, mechanical and corrosion properties of TiO2–WO3 mixed oxide films deposited on TiAlV surface by electron beam evaporation. Appl Surf Sci 421:185–190

    Article  Google Scholar 

  14. Wang Z, Yang C, Lin T, Yin H, Chen P, Wan D, Xu F, Huang F, Lin J, Xie X, Jiang M (2013) H-doped black titania with very high solar absorption and excellent photocatalysis enhanced by localized surface plasmon resonance. Adv Funct Mater 23:5444–5450

    Article  Google Scholar 

  15. Wan S, Zhong Q, Ou M, Zhang S (2017) Synthesis and characterization of direct Z-scheme Bi2MoO6/ZnIn2S4 composite photocatalyst with enhanced photocatalytic oxidation of NO under visible light. J Mater Sci 52:11453–11466. https://doi.org/10.1007/s10853-017-1283-3

    Article  Google Scholar 

  16. Tanaka A, Teramura K, Hosokawa S, Kominami H, Tanaka T (2017) Visible light-induced water splitting in an aqueous suspension of a plasmonic Au/TiO2 photocatalyst with metal co-catalysts. Chem Sci 8:2574–2580

    Article  Google Scholar 

  17. Yu C, Zhou W, Zhu L, Li G, Yang K, Jin R (2016) Integrating plasmonic Au nanorods with dendritic like α-Bi2O3/Bi2O2CO3 heterostructures for superior visible-light-driven photocatalysis. Appl Catal B Environ 184:1–11

    Article  Google Scholar 

  18. Zhao WW, Liu Z, Shan S, Zhang WW, Wang J, Ma ZY, Xu JJ, Chen HY (2014) Bismuthoxyiodide nanoflakes/titania nanotubes arrayed pn heterojunction and its application for photoelectrochemical bioanalysis. Sci Rep 4:4426

    Article  Google Scholar 

  19. Kumar D, Lee A, Lee T, Lim M, Lim DK (2016) Ultrafast and efficient transport of hot plasmonic electrons by graphene for Pt free, highly efficient visible-light responsive photocatalyst. Nano Lett 16:1760–1767

    Article  Google Scholar 

  20. Zhang N, Han C, Xu YJ, Foley JJ IV, Zhang D, Codrington J, Gray SK, Sun Y (2016) Near-field dielectric scattering promotes optical absorption by platinum nanoparticles. Nat Photon 10:473–482

    Article  Google Scholar 

  21. Liu P, Zhao Y, Qin R, Mo S, Chen G, Gu L, Chevrier DM, Zhang P, Guo Q, Zang D, Wu B, Fu G, Zheng N (2016) Photochemical route for synthesizing atomically dispersed palladium catalysts. Science 352:797–800

    Article  Google Scholar 

  22. Zhou M, Wang H, Vara M, Hood ZD, Luo M, Yang TH, Bao S, Chi M, Xiao P, Zhang Y, Xia Y (2016) Quantitative analysis of the reduction kinetics responsible for the one-pot synthesis of Pd–Pt bimetallic nanocrystals with different structures. J Am Chem Soc 138:12263–12270

    Article  Google Scholar 

  23. Roy N, Leung KT, Pradhan D (2015) Nitrogen doped reduced graphene oxide based Pt–TiO2 nanocomposites for enhanced hydrogen evolution. J Phys Chem C 119:19117–19125

    Article  Google Scholar 

  24. Khalily MA, Eren H, Akbayrak S, Susapto HH, Biyikli N, Özkar S, Guler MO (2016) Facile synthesis of three-dimensional Pt–TiO2 nano-networks: a highly active catalyst for the hydrolytic dehydrogenation of ammonia–borane. Angew Chem 128:12445–12449

    Article  Google Scholar 

  25. Yan J, Wu S, Zhai X, Gao X, Li X (2017) Si microwire array photoelectrochemical cells: stabilized and improved performances with surface modification of Pt nanoparticles and TiO2 ultrathin film. J Power Sour 342:460–466

    Article  Google Scholar 

  26. Chang TY, Tanaka Y, Ishikawa R, Toyoura K, Matsunaga K, Ikuhara Y, Shibata N (2014) Direct imaging of Pt single atoms adsorbed on TiO2 (110) surfaces. Nano Lett 14:134–138

    Article  Google Scholar 

  27. Liu E, Kang L, Yang Y, Sun T, Hu X, Zhu C, Liu H, Wang Q, Li X, Fan J (2014) Plasmonic Ag deposited TiO2 nano-sheet film for enhanced photocatalytic hydrogen production by water splitting. Nanotechnology 25:165401

    Article  Google Scholar 

  28. Haselmann GM, Eder D (2017) Early-stage deactivation of Pt-loaded TiO2 using in situ photodeposition during photocatalytic hydrogen evolution. ACS Catal 7:4668–4675

    Article  Google Scholar 

  29. Wang G, Wang H, Ling Y, Tang Y, Yang X, Fitzmorris RC, Wang C, Zhang JZ, Li Y (2011) Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting. Nano Lett 11:3026–3033

    Article  Google Scholar 

  30. Wang Z, Yang C, Lin T, Yin H, Chen P, Wan D, Xu F, Huang F, Lin J, Xie X, Jiang M (2013) Visible-light photocatalytic, solar thermal and photoelectrochemical properties of aluminium-reduced black titania. Energy Environ Sci 6:3007–3014

    Article  Google Scholar 

  31. Feng N, Wang Q, Zheng A, Zhang Z, Fan J, Liu SB, Amoureux JP, Deng F (2013) Understanding the high photocatalytic activity of (B, Ag)-codoped TiO2 under solar-light irradiation with XPS, solid-state NMR, and DFT calculations. J Am Chem Soc 135:1607–1616

    Article  Google Scholar 

  32. Abdi FF, Han L, Smets AH, Zeman M, Dam B, Van De Krol R (2013) Efficient solar water splitting by enhanced charge separation in a bismuth vanadate-silicon tandem photoelectrode. Nat Commun 4:2195

    Article  Google Scholar 

  33. He H, Berglund SP, Rettie AJ, Chemelewski WD, Xiao P, Zhang Y, Mullins CB (2014) Synthesis of BiVO4 nanoflake array films for photoelectrochemical water oxidation. J Mater Chem A 2:9371–9379

    Article  Google Scholar 

  34. Tang H, Prasad K, Sanjines R, Schmid PE, Levy F (1994) Electrical and optical properties of TiO2 anatase thin films. J Appl Phys 75:2042–2047

    Article  Google Scholar 

  35. Klahr B, Gimenez S, Fabregat-Santiago F, Hamann T, Bisquert J (2012) Water oxidation at hematite photoelectrodes: the role of surface states. J Am Chem Soc 134:4294–4302

    Article  Google Scholar 

  36. Klotz D, Ellis DS, Dotan H, Rothschild A (2016) Empirical in operando analysis of the charge carrier dynamics in hematite photoanodes by PEIS, IMPS and IMVS. Phys Chem Chem Phys 18:3438–23457

    Article  Google Scholar 

  37. Shi Y, Zhu C, Wang L, Li W, Cheng C, Ho KM, Fung KK, Wang N (2012) Optimizing nanosheet-based ZnO hierarchical structure through ultrasonic-assisted precipitation for remarkable photovoltaic enhancement in quasi-solid dye-sensitized solar cells. J Mater Chem 22:13097–13103

    Article  Google Scholar 

  38. Hejazi S, Nguyen NT, Mazare A, Schmuki P (2017) Aminated TiO2 nanotubes as a photoelectrochemical water splitting photoanode. Catal Today 281:189–197

    Article  Google Scholar 

  39. Sánchez-Tovar R, Blasco-Tamarit E, Fernández-Domene RM, Lucas-Granados B, García-Antón J (2017) Should TiO2 nanostructures doped with Li+ be used as photoanodes for photoelectrochemical water splitting applications. J Catal 349:41–52

    Article  Google Scholar 

  40. Wu MC, Chen CH, Huang WK, Hsiao KC, Lin TH, Chan SH, Wu PY, Lu CF, Chang YH, Lin TF, Hsu KH, Hsu JF, Lee KM, Shyue JJ, Kordás K, Su WF (2017) Improved solar-driven photocatalytic performance of highly crystalline hydrogenated TiO2 nanofibers with core-shell structure. Sci Rep 7:40896

    Article  Google Scholar 

  41. Tiep NH, Ku Z, Fan HJ (2016) Recent advances in improving the stability of perovskite solar cells. Adv Energy Mater 6:1501420

    Article  Google Scholar 

  42. Dong C, Xing M, Zhang J (2016) Double-cocatalysts promote charge separation efficiency in CO2 photoreduction: spatial location matters. Mater Horiz 3:608–612

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the fundamental research funds for the Central Universities (Project No. 106112015CDJZR305501).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Xiao.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1468 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, Y., Yang, L., Xiao, P. et al. Enhanced charge separation and oxidation kinetics by loading Pt nanoparticles with hydrogenated TiO2 nanotubes. J Mater Sci 53, 7703–7714 (2018). https://doi.org/10.1007/s10853-018-2079-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2079-9

Keywords

Navigation