Skip to main content
Log in

Ferromagnetism, structure transitions, and strain coupling of magnetoelastic double perovskite La2CoMnO6

  • Ceramics
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Double perovskite La2CoMnO6 is an attractive spintronics with magnetoelectric, magnetodielectric, and magnetoresistive effects, which are related, at least in part, to combined structural and magnetic instabilities. To explore its magnetoelastic coupling behaviour, a conventional analysis of lattice parameter data in terms of spontaneous strain shows that the ferromagnetic ordering process is accompanied by significant volume (eaM) and shear (etM) strains. The DC and AC magnetic data reveal the antisite defects with antiphase regions, and the ferromagnetic transition is at ~ 230 K with a small antiferromagnetic ordering at about 170 K. In addition, the Rietveld refinement of the in situ variation X-ray diffraction from 120 to 1400 K, scanning electron microscopy, and differential scanning calorimetry were used to confirm the crystal structure, microstructure, magnetic, and structural anomalies of the sample synthesised in pure oxygen atmosphere. This study, and in particular the strain analysis, of La2CoMnO6 will facilitate its potential application in the field of spin electronics and thin-film engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Vasala S, Karppinen M (2015) A2B′B″O6 perovskites: a review, PROG. Solid State CH 43(1–2):1–36

    Google Scholar 

  2. Volonakis G, Haghighirad AA, Milot RL, Sio WH, Filip MR, Wenger B, Johnston MB, Herz LM, Snaith HJ, Giustino F (2017) Cs2InAgCl6: a new lead-free halide double perovskite with direct band gap. J Phys Chem Lett 8(4):772–778

    Article  Google Scholar 

  3. Corredor LT, Aslan-Cansever G, Sturza M, Manna K, Maljuk A, Gass S, Dey T, Wolter AUB, Kataeva O, Zimmermann A, Geyer M, Blum CGF, Wurmehl S, Büchner B (2017) Iridium double perovskite Sr2YIrO6: a combined structural and specific heat study. Phys Rev B 95(6):064418

    Article  Google Scholar 

  4. Du K, Meng W, Wang X, Yan Y, Mitzi DB (2017) Bandgap engineering of lead-free double perovskite Cs2AgBiBr6 through trivalent metal alloying. Angew Chem Int Ed 56(28):8158–8162

    Article  Google Scholar 

  5. Kumar N, Khurana G, Katiyar RS, Gaur A, Kotnala RK (2017) Double perovskite Sr2FeMoO6: a potential candidate for room temperature magnetoresistance device applications. In: Asfour A (ed) Magnetic sensors—development trends and applications. InTech, Rijeka, p Ch. 05

    Google Scholar 

  6. Yang D, Zhao P, Huang S, Yang T, Huo D (2019) Ferrimagnetism, resistivity, and magnetic exchange interactions in double perovskite La2CrMnO6. Results Phys 12:344–348

    Article  Google Scholar 

  7. Galceran R, López-Mir L, Bozzo B, Cisneros-Fernández J, Santiso J, Balcells L, Frontera C, Martínez B (2016) Strain-induced perpendicular magnetic anisotropy in La2CoMnO6-ε thin films and its dependence on film thickness. Phys Rev B 93(14):144417

    Article  Google Scholar 

  8. Yuan N, Liu X, Meng F, Zhou D, Meng J (2015) First-principles study of La2CoMnO6: a promising cathode material for intermediate-temperature solid oxide fuel cells due to intrinsic Co-Mn cation disorder. Ionics 21(6):1675–1681

    Article  Google Scholar 

  9. Barón-González AJ, Frontera C, García-Muñoz JL, Rivas-Murias B, Blasco J (2011) Effect of cation disorder on structural, magnetic and dielectric properties of La2MnCoO6 double perovskite. J Phys Condens Matter 23(49):496003

    Article  Google Scholar 

  10. Dass RI, Goodenough JB (2003) Multiple magnetic phases of La2CoMnO6-δ (0<~δ<~005). Phys Rev B 67(1):014401

    Article  Google Scholar 

  11. Yi QL, Xiang MC (2011) Dielectric, ferromagnetic characteristics, and room-temperature magnetodielectric effects in double perovskite La2CoMnO6 ceramics. J Am Ceram Soc 94(3):782–787

    Article  Google Scholar 

  12. Sayed FN, Achary SN, Deshpande SK, Rajeswari B, Kadam RM, Dwebedi S, Nigam AK, Tyagi AK (2014) Role of annealing atmosphere on structure, dielectric and magnetic properties of La2CoMnO6 and La2MgMnO6. Z Anorg Allg Chem 640(10):1907–1921

    Article  Google Scholar 

  13. Li Q-H, Li N, Hu J-Z, Han Q, Ma Q-S, Ge L, Xiao B, Xu M-X (2014) The effect of Ca-substitution in La-site on the magnetic properties of La2CoMnO6. J Appl Phys 116(3):033905

    Article  Google Scholar 

  14. Singh MP, Truong KD, Fournier P (2007) Magnetodielectric effect in double perovskite La2CoMnO6 thin films. Appl Phys Lett 91(4):042504

    Article  Google Scholar 

  15. Barón-González AJ, Frontera C, García-Muñoz JL, Roqueta J, Santiso J (2010) Magnetic, structural properties and B-site order of two epitaxial La2CoMnO6 films with perpendicular out-of-plane orientation. J Phys Conf Ser 200(9):092002

    Article  Google Scholar 

  16. Truong KD, Laverdière J, Singh MP, Jandl S, Fournier P (2007) Impact of Co/Mn cation ordering on phonon anomalies in La2CoMnO6 double perovskites: Raman spectroscopy. Phys Rev B 76(13):132413

    Article  Google Scholar 

  17. Bull C, Gleeson D, Knight K (2003) Determination of B-site ordering and structural transformations in the mixed transition metal perovskites La2CoMnO6 and La2NiMnO6. J Phys Condens Matter 15(29):4927–4936

    Article  Google Scholar 

  18. Orayech B, Urcelay-Olabarria I, Lopez GA, Fabelo O, Faik A, Igartua JM (2015) Synthesis, structural, magnetic and phase-transition studies of the ferromagnetic La2CoMnO6 double perovskite by symmetry-adapted modes. Dalton Trans 44(31):13867–13880

    Article  Google Scholar 

  19. Serrate D, De Teresa JM, Ibarra MR (2007) Double perovskites with ferromagnetism above room temperature. J Phys Condens Matter 19(2):023201–023286

    Article  Google Scholar 

  20. Sahoo RC, Das S, Nath TK (2018) Influence of magnetic frustration and structural disorder on magnetocaloric effect and magneto-transport properties in La1.5Ca0.5CoMnO6 double perovskite. J Appl Phys 123(1):013902

    Article  Google Scholar 

  21. Sahoo RC, Paladhi D, Dasgupta P, Poddar A, Singh R, Das A, Nath TK (2017) Antisite-disorder driven large exchange bias effect in phase separated La1.5Ca0.5CoMnO6 double perovskite. J Magn Magn Mater 428:86–91

    Article  Google Scholar 

  22. Yang D, Harrison RJ, Schiemer JA, Lampronti GI, Liu X, Zhang F, Ding H, Liu YG, Carpenter MA (2016) Magnetostructural coupling behavior at the ferromagnetic transition in double-perovskite Sr2FeMoO6. Phys Rev B 93(2):024101

    Article  Google Scholar 

  23. Yin HQ, Zhou JS, Dass R, Zhou JP, Mcdevitt JT, Goodenough JB (2000) Grain-boundary room-temperature low-field magnetoresistance in Sr2FeMoO6 films. J Appl Phys 87(9):6761–6763

    Article  Google Scholar 

  24. Du C, Adur R, Wang H, Hauser AJ, Yang F, Hammel PC (2013) Control of magnetocrystalline anisotropy by epitaxial strain in double perovskite Sr2FeMoO6 films. Phys Rev Lett 110(14):147204

    Article  Google Scholar 

  25. Deniz H, Preziosi D, Alexe M, Hesse D, Eisenschmidt C, Schmidt G, Pintilie L (2015) Microstructure and properties of epitaxial Sr2FeMoO6 films containing SrMoO4 precipitates. J Mater Sci 50(8):3131–3138. https://doi.org/10.1007/s10853-015-8874-7

    Article  Google Scholar 

  26. Galceran R, Frontera C, Balcells L, Cisneros-Fernández J, López-Mir L, Roqueta J, Santiso J, Bagués N, Bozzo B, Pomar A, Sandiumenge F, Martínez B (2014) Engineering the microstructure and magnetism of La2CoMnO6−δ thin films by tailoring oxygen stoichiometry. Appl Phys Lett 105(24):242401

    Article  Google Scholar 

  27. Carpenter M (2015) Static and dynamic strain coupling behaviour of ferroic and multiferroic perovskites from resonant ultrasound spectroscopy. J Phys Condens Matter 27(26):263201

    Article  Google Scholar 

  28. Cohelo A (2007) TOPAS-academic. Coelho Software Brisbane, Australia

    Google Scholar 

  29. Feng HL, Arai M, Matsushita Y, Tsujimoto Y, Guo Y, Sathish CI, Wang X, Yuan Y-H, Tanaka M, Yamaura K (2014) High-temperature ferrimagnetism driven by lattice distortion in double perovskite Ca2FeOsO6. J Am Chem Soc 136(9):3326–3329

    Article  Google Scholar 

  30. Yang D, Yang T, Sun Q, Chen Y, Lampronti GI (2017) The annealing effects on the crystal structure, magnetism and microstructure of the ferromagnetic double perovskite Sr2FeMoO6 synthesized via spark plasma sintering. J Alloys Compds 728:337–342

    Article  Google Scholar 

  31. Sánchez D, Alonso JA, García-Hernández M, Martínez-Lope MJ, Martínez JL, Mellergård A (2002) Origin of neutron magnetic scattering in antisite-disordered Sr2FeMoO6 double perovskites. Phys Rev B 65(10):104426

    Article  Google Scholar 

  32. Deniz H, Preziosi D, Alexe M, Hesse D (2017) Coherent Fe-rich nano-scale perovskite oxide phase in epitaxial Sr2FeMoO6 films grown on cubic and scandate substrates. J Appl Phys 121(2):023906

    Article  Google Scholar 

  33. Wang XL, James M, Horvat J, Dou SX (2002) Spin glass behaviour in ferromagnetic La2CoMnO6 perovskite manganite. Supercond Sci Technol 15(3):427–430

    Article  Google Scholar 

  34. Yang D, Chatterji T, Schiemer JA, Carpenter MA (2016) Strain coupling, microstructure dynamics, and acoustic mode softening in germanium telluride. Phys Rev B 93(14):144109

    Article  Google Scholar 

  35. Carpenter MA, Schiemer JA, Lascu I, Harrison RJ, Kumar A, Katiyar RS, Ortega N, Sanchez DA, Mejia CS, Schnelle W, Echizen M, Shinohara H, Heap AJF, Nagaratnam R, Dutton SE, Scott JF (2015) Elastic and magnetoelastic relaxation behaviour of multiferroic (ferromagnetic + ferroelectric + ferroelastic) Pb(Fe0.5Nb0.5)O3 perovskite. J Phys Condens Matter 27:285901

    Article  Google Scholar 

  36. Thomson RI, Chatterji T, Carpenter MA (2014) CoF2: a model system for magnetoelastic coupling and elastic softening mechanisms associated with paramagnetic↔antiferromagnetic phase transitions. J Phys Condens Matter 26:146001

    Article  Google Scholar 

  37. Michel C (1970) Structures and relationships of some perovskite-type compounds. Doctoral Dissertations. Paper 2281

  38. Yang D, Wang W, Yang T, Lampronti GI, Ye H, Wu L, Yu Q, Lu S (2018) Role of spontaneous strains on the biphasic nature of partial B-site disorder double perovskite La2NiMnO6. APL Mater 6(6):066102

    Article  Google Scholar 

  39. Muñoz A, Alonso JA, Casais MT, Martínezlope MJ, Fernándezdíaz MT (2002) Crystal and magnetic structure of the complex oxides Sr2MnMoO6, Sr2MnWO6 and Ca2MnWO6: a neutron diffraction study. J Phys Condens Matter 14(38):8817–8830

    Article  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China (Grant No. 51702289) and the China Postdoctoral Science Foundation (Grant No. 2016M601963). T. Yang would like to acknowledge financial support from Engineering Research Center of non-metallic minerals of Zhejiang Province, Key Laboratory of Clay Minerals, Ministry of Land and Resources.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dexin Yang or Yan’gai Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, D., Yang, T., Chen, Y. et al. Ferromagnetism, structure transitions, and strain coupling of magnetoelastic double perovskite La2CoMnO6. J Mater Sci 54, 6027–6037 (2019). https://doi.org/10.1007/s10853-018-03306-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-03306-6

Navigation