Skip to main content
Log in

Common but differentiated flexible MIL-53(Al): role of metal sources in synthetic protocol for tuning the adsorption characteristics

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The property tuning of metal–organic frameworks (MOFs) has been an active pursuit in both academia and industry. In this work, structural properties of a promising flexible MOF, MIL-53(Al), were finely tuned via a metal source-based synthetic protocol. Varying degrees of framework flexibility and hydrophilicity have been achieved using water-insoluble metal sources, such as alumina, aluminum hydroxide, boehmite, and traditional aluminum nitrate for synthesis. MIL-53(Al) prepared from alumina was the most rigid and hydrophilic as is confirmed by powder X-ray diffraction, vapor adsorption, and diffuse reflectance infrared Fourier transform spectroscopy. Magic-angle spinning nuclear magnetic resonance results revealed that utilizing insoluble metal sources entailed different reaction mechanisms during MOF synthesis and introduced uncoordinated carboxyl into the framework. Through selection of metal sources, the adsorption characteristics of MIL-53(Al) were successfully tuned. The samples prepared from insoluble metal sources showed increased adsorption capacities toward iodine and bisphenol A. The maximum capacity toward iodine in water and n-hexane was one and six times higher than that of conventional MIL-53(Al), respectively. This finding offers excellent prospects for the structural regulation and property tuning of MOFs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Su X, Bromberg L, Martis V, Simeon F, Huq A, Hatton TA (2017) Postsynthetic functionalization of Mg-MOF-74 with tetraethylenepentamine: structural characterization and enhanced CO2 adsorption. ACS Appl Mater Interfaces 9(12):11299–11306. https://doi.org/10.1021/acsami.7b02471

    Article  Google Scholar 

  2. Kim JY, Zhang LD, Balderas-Xicohtencatl R, Park J, Hirscher M, Moon HR, Oh H (2017) Selective hydrogen isotope separation via breathing transition in MIL-53(AI). J Am Chem Soc 139(49):17743–17746. https://doi.org/10.1021/jacs.7b10323

    Article  Google Scholar 

  3. Xu HQ, Hu J, Wang D, Li Z, Zhang Q, Luo Y, Yu SH, Jiang HL (2015) Visible-light photoreduction of CO2 in a metal–organic framework: boosting electron-hole separation via electron trap states. J Am Chem Soc 137(42):13440–13443. https://doi.org/10.1021/jacs.5b08773

    Article  Google Scholar 

  4. Chen X, Tong R, Shi Z, Yang B, Liu H, Ding S, Wang X, Lei Q, Wu J, Fang W (2018) MOF nanoparticles with encapsulated autophagy inhibitor in controlled drug delivery system for antitumor. ACS Appl Mater Interfaces 10(3):2328–2337. https://doi.org/10.1021/acsami.7b16522

    Article  Google Scholar 

  5. Huang TY, Kung CW, Liao YT, Kao SY, Cheng MS, Chang TH, Henzie J, Alamri HR, Alothman ZA, Yamauchi Y, Ho KC, Wu KCW (2017) Enhanced charge collection in MOF-525–PEDOT nanotube composites enable highly sensitive biosensing. Adv Sci 4(11):1700261. https://doi.org/10.1002/advs.201700261

    Article  Google Scholar 

  6. Torad NL, Hu M, Ishihara S, Sukegawa H, Belik AA, Imura M, Ariga K, Sakka Y, Yamauchi Y (2014) Direct synthesis of MOF-derived nanoporous carbon with magnetic Co nanoparticles toward efficient water treatment. Small 10(10):2096–2107. https://doi.org/10.1002/smll.201302910

    Article  Google Scholar 

  7. Horike S, Shimomura S, Kitagawa S (2009) Soft porous crystals. Nat Chem 1(9):695–704. https://doi.org/10.1038/nchem.444

    Article  Google Scholar 

  8. Chang Z, Yang DH, Xu J, Hu TL, Bu XH (2015) Flexible metal–organic frameworks: recent advances and potential applications. Adv Mater 27(36):5432–5441. https://doi.org/10.1002/adma.201501523

    Article  Google Scholar 

  9. Chen C-X, Wei Z, Jiang J-J, Fan Y-Z, Zheng S-P, Cao C-C, Li Y-H, Fenske D, Su C-Y (2016) Precise modulation of the breathing behavior and pore surface in Zr-MOFs by reversible post-synthetic variable-spacer installation to fine-tune the expansion magnitude and sorption properties. Angew Chem 128(34):10086–10090. https://doi.org/10.1002/ange.201604023

    Article  Google Scholar 

  10. Vermoortele F, Ameloot R, Vimont A, Serre C, De Vos D (2011) An amino-modified Zr-terephthalate metal-organic framework as an acid-base catalyst for cross-aldol condensation. Chem Commun 47(5):1521–1523. https://doi.org/10.1039/c0cc03038d

    Article  Google Scholar 

  11. Jabbari V, Veleta JM, Zarei-Chaleshtori M, Gardea-Torresdey J, Villagran D (2016) Green synthesis of magnetic MOF@GO and MOF@CNT hybrid nanocomposites with high adsorption capacity towards organic pollutants. Chem Eng J 304:774–783. https://doi.org/10.1016/j.cej.2016.06.034

    Article  Google Scholar 

  12. Ahmed I, Jhung SH (2014) Composites of metal–organic frameworks: preparation and application in adsorption. Mater Today 17(3):136–146. https://doi.org/10.1016/j.mattod.2014.03.002

    Article  Google Scholar 

  13. Taylor JM, Dekura S, Ikeda R, Kitagawa H (2015) defect control to enhance proton conductivity in a metal–organic framework. Chem Mater 27(7):2286–2289. https://doi.org/10.1021/acs.chemmater.5b00665

    Article  Google Scholar 

  14. Kitagawa S (2017) Future porous materials. Acc Chem Res 50(3):514–516. https://doi.org/10.1021/acs.accounts.6b00500

    Article  Google Scholar 

  15. Mounfield WP 3rd, Walton KS (2015) Effect of synthesis solvent on the breathing behavior of MIL-53(Al). J Colloid Interface Sci 447:33–39. https://doi.org/10.1016/j.jcis.2015.01.027

    Article  Google Scholar 

  16. Liang W, Coghlan CJ, Ragon F, Rubio-Martinez M, D’Alessandro DM, Babarao R (2016) Defect engineering of UiO-66 for CO2 and H2O uptake—a combined experimental and simulation study. Dalton Trans 45(11):4496–4500. https://doi.org/10.1039/c6dt00189k

    Article  Google Scholar 

  17. Fischer M, Schwegler J, Paula C, Schulz PS, Hartmann M (2016) Direct synthesis of non-breathing MIL-53(Al)(ht) from a terephthalate-based ionic liquid as linker precursor. Dalton Trans 45(46):18443–18446. https://doi.org/10.1039/c6dt03930h

    Article  Google Scholar 

  18. Ahnfeldt T, Gunzelmann D, Loiseau T, Hirsemann D, Senker J, Ferey G, Stock N (2009) Synthesis and modification of a functionalized 3D open-framework structure with MIL-53 topology. Inorg Chem 48(7):3057–3064. https://doi.org/10.1021/ic8023265

    Article  Google Scholar 

  19. Nouar F, Devic T, Chevreau H, Guillou N, Gibson E, Clet G, Daturi M, Vimont A, Greneche JM, Breeze MI, Walton RI, Llewellyn PL, Serre C (2012) Tuning the breathing behaviour of MIL-53 by cation mixing. Chem Commun 48(82):10237–10239. https://doi.org/10.1039/c2cc35348b

    Article  Google Scholar 

  20. Li Z, Wu YN, Li J, Zhang Y, Zou X, Li F (2015) The metal-organic framework MIL-53(Al) constructed from multiple metal sources: alumina, aluminum hydroxide, and boehmite. Chemistry 21(18):6913–6920. https://doi.org/10.1002/chem.201406531

    Article  Google Scholar 

  21. Liu Y, Her JH, Dailly A, Ramirez-Cuesta AJ, Neumann DA, Brown CM (2008) Reversible structural transition in MIL-53 with large temperature hysteresis. J Am Chem Soc 130(35):11813–11818. https://doi.org/10.1021/ja803669w

    Article  Google Scholar 

  22. Loiseau T, Serre C, Huguenard C, Fink G, Taulelle F, Henry M, Bataille T, Ferey G (2004) A rationale for the large breathing of the porous aluminum terephthalate (MIL-53) upon hydration. Chem Eur J 10(6):1373–1382. https://doi.org/10.1002/chem.200305413

    Article  Google Scholar 

  23. Liu J, Zhang F, Zou X, Yu G, Zhao N, Fan S, Zhu G (2013) Environmentally friendly synthesis of highly hydrophobic and stable MIL-53 MOF nanomaterials. Chem Commun 49(67):7430–7432. https://doi.org/10.1039/c3cc42287a

    Article  Google Scholar 

  24. Shigematsu A, Yamada T, Kitagawa H (2011) Wide control of proton conductivity in porous coordination polymers. J Am Chem Soc 133(7):2034–2036. https://doi.org/10.1021/ja109810w

    Article  Google Scholar 

  25. Canivet J, Fateeva A, Guo Y, Coasne B, Farrusseng D (2014) Water adsorption in MOFs: fundamentals and applications. Chem Soc Rev 43(16):5594–5617. https://doi.org/10.1039/c4cs00078a

    Article  Google Scholar 

  26. Bourrelly S, Moulin B, Rivera A, Maurin G, Devautour-Vinot S, Serre C, Devic T, Horcajada P, Vimont A, Clet G, Daturi M, Lavalley JC, Loera-Serna S, Denoyel R, Llewellyn PL, Ferey G (2010) Explanation of the adsorption of polar vapors in the highly flexible metal organic framework MIL-53(Cr). J Am Chem Soc 132(27):9488–9498. https://doi.org/10.1021/ja1023282

    Article  Google Scholar 

  27. Moran CM, Joshi JN, Marti RM, Hayes SE, Walton KS (2018) Structured growth of metal-organic framework MIL-53(Al) from solid aluminum carbide precursor. J Am Chem Soc 140(29):9148–9153. https://doi.org/10.1021/jacs.8b04369

    Article  Google Scholar 

  28. Küsgens P, Rose M, Senkovska I, Fröde H, Henschel A, Siegle S, Kaskel S (2009) Characterization of metal-organic frameworks by water adsorption. Microporous Mesoporous Mater 120(3):325–330. https://doi.org/10.1016/j.micromeso.2008.11.020

    Article  Google Scholar 

  29. Reimer N, Gil B, Marszalek B, Stock N (2012) Thermal post-synthetic modification of Al-MIL-53–COOH: systematic investigation of the decarboxylation and condensation reaction. CrystEngComm 14(12):4119–4125. https://doi.org/10.1039/c2ce06649a

    Article  Google Scholar 

  30. Burtch NC, Jasuja H, Walton KS (2014) Water stability and adsorption in metal–organic frameworks. Chem Rev 114(20):10575–10612. https://doi.org/10.1021/cr5002589

    Article  Google Scholar 

  31. Trung TK, Trens P, Tanchoux N, Bourrelly S, Llewellyn PL, Loera-Serna S, Serre C, Loiseau T, Fajula F, Ferey G (2008) Hydrocarbon adsorption in the flexible metal organic frameworks MIL-53(Al, Cr). J Am Chem Soc 130(50):16926–16932. https://doi.org/10.1021/ja8039579

    Article  Google Scholar 

  32. Volkringer C, Loiseau T, Guillou N, Ferey G, Elkaim E, Vimont A (2009) XRD and IR structural investigations of a particular breathing effect in the MOF-type gallium terephthalate MIL-53(Ga). Dalton Trans 12:2241–2249. https://doi.org/10.1039/b817563b

    Article  Google Scholar 

  33. Salazar JM, Weber G, Simon JM, Bezverkhyy I, Bellat JP (2015) Characterization of adsorbed water in MIL-53(Al) by FTIR spectroscopy and ab initio calculations. J Chem Phys 142(12):124702. https://doi.org/10.1063/1.4914903

    Article  Google Scholar 

  34. Yang D, Odoh SO, Wang TC, Farha OK, Hupp JT, Cramer CJ, Gagliardi L, Gates BC (2015) Metal–organic framework nodes as nearly ideal supports for molecular catalysts: NU-1000- and UiO-66-supported iridium complexes. J Am Chem Soc 137(23):7391–7396. https://doi.org/10.1021/jacs.5b02956

    Article  Google Scholar 

  35. Lieder C, Opelt S, Dyballa M, Henning H, Klemm E, Hunger M (2010) Adsorbate effect on AlO4(OH)(2) centers in the metal–organic framework MIL-53 investigated by solid-state NMR spectroscopy. J Phys Chem C 114(39):16596–16602. https://doi.org/10.1021/jp105700b

    Article  Google Scholar 

  36. Falaise C, Volkringer C, Facqueur J, Bousquet T, Gasnot L, Loiseau T (2013) Capture of iodine in highly stable metal-organic frameworks: a systematic study. Chem Commun 49(87):10320–10322. https://doi.org/10.1039/c3cc43728k

    Article  Google Scholar 

  37. Qin FX, Jia SY, Liu Y, Li HY, Wu SH (2015) Adsorptive removal of bisphenol A from aqueous solution using metal-organic frameworks. Desalin Water Treat 54(1):93–102. https://doi.org/10.1080/19443994.2014.883331

    Article  Google Scholar 

  38. Boutin A, Couck S, Coudert FX, Serra-Crespo P, Gascon J, Kapteijn F, Fuchs AH, Denayer JFM (2011) Thermodynamic analysis of the breathing of amino-functionalized MIL-53(Al) upon CO2 adsorption. Microporous Mesoporous Mater 140(1–3):108–113. https://doi.org/10.1016/j.micromeso.2010.07.009

    Article  Google Scholar 

  39. Zhang Y, Causserand C, Aimar P, Cravedi JP (2006) Removal of bisphenol A by a nanofiltration membrane in view of drinking water production. Water Res 40(20):3793–3799. https://doi.org/10.1016/j.watres.2006.09.011

    Article  Google Scholar 

  40. Hou S, Lu H, Gu Y, Ma X, Wu Y, Wang Y, Li F (2017) Conversion of water-insoluble aluminum sources into metal–organic framework MIL-53(Al) and its adsorptive removal of roxarsone. Chin J Mater Res 31(7):495–501. https://doi.org/10.11901/1005.3093.2017.313

    Google Scholar 

  41. Zhan G, Zeng HC (2016) Alternative synthetic approaches for metal–organic frameworks: transformation from solid matters. Chem Commun 53(1):72–81. https://doi.org/10.1039/c6cc07094a

    Article  Google Scholar 

  42. Liao P-Q, Zhu A-X, Zhang W-X, Zhang J-P, Chen X-M (2015) Self-catalysed aerobic oxidization of organic linker in porous crystal for on-demand regulation of sorption behaviours. Nat Commun 6:6350. https://doi.org/10.1038/ncomms7350

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21777119), Science and Technology Commission of Shanghai Municipality (17230711600), the Fundamental Research Funds for the Central Universities, and Sichuan Science and Technology Program (2018TJPT0017).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yi-nan Wu or Fengting Li.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 333 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, L., Chen, R., Hou, S. et al. Common but differentiated flexible MIL-53(Al): role of metal sources in synthetic protocol for tuning the adsorption characteristics. J Mater Sci 54, 6174–6185 (2019). https://doi.org/10.1007/s10853-018-03287-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-03287-6

Navigation