Skip to main content
Log in

Colossal dielectric, relaxor ferroelectric, diamagnetic and weak ferromagnetic properties of NdCrO3 perovskite nanoparticles

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The NdCrO3 perovskite nanoparticles have been successfully synthesized using sol–gel auto-combustion process. Structural and morphological characterizations of the material have been performed at room temperature using XRD and SEM, respectively. Frequency- and temperature-dependent dielectric measurements have been performed in the range of 1 Hz–10 MHz and RT − 300 °C, respectively. The dielectric constant is found to be in the order of ε′ > 103 at room temperature, indicating the colossal dielectric constant behaviour. Ferroelectric phase transition temperature has increased with an increase in frequency, suggesting that the material is a relaxor ferroelectric nature. Temperature- and field-dependent magnetization measurements have been carried out in the temperature range (5–400 K) and field up to 5 T. M–T curve exhibited a diamagnetic-like behaviour in low temperature and low fields. Two magnetic transitions were found at TN1 (223 K) and TN2 (33 K) which correspond to para to weak ferromagnetic transition and Nd3+ spin ordering, respectively. Hysteresis loop noticed weak ferromagnetism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Sahu JR, Serrao CR, Ray N, Waghmar UV, Rao CNR (2007) Rare earth chromites: a new family of multiferroics. J Mater Chem 17:42–44

    Article  Google Scholar 

  2. Ahmad I, Akhtar MJ, Younas M, Siddique M, Hasan MM (2012) Small polaronic hole hopping mechanism and Maxwell-Wagner relaxation in NdFeO3. J Appl Phys 112:074105

    Article  Google Scholar 

  3. Du Y, Cheng Z, Wang X, Dou SX (2010) Structure, magnetic, and thermal properties of Nd1−xLaxCrO3 (0 ≤ x ≤ 1.0). J Appl Phys 108:093914

    Article  Google Scholar 

  4. Bora T, Ravi S (2015) Sign reversal of magnetization and tunable exchange bias field in NdCr1−xFexO3 (x = 0.05–0.2). J Magn Magn Mater 386:85–91

    Article  Google Scholar 

  5. Coskun M, Polat O, Coskun FM, Durmus Z, Çaglar M, Turut A (2018) The electrical modulus and other dielectric properties by the impedance spectroscopy of LaCrO3 and LaCr0.90Ir0.10O3 perovskites. RSC Adv 8:4634–4648

    Article  Google Scholar 

  6. Shanker J, Venkataramana K, Vittal Prasad B, Vijaya Kumar R, Suresh Babu D (2018) Influence of Fe substitution on structural and electrical properties of Gd orthochromite ceramics. J Alloys Compd 732:314–327

    Article  Google Scholar 

  7. Shanker J, Buchi Suresh M, Saravanan P, Suresh Babu D (2018) Effects of Fe substitution on structural, electrical and magnetic properties of erbium ortho-chromite nano polycrystalline material. J Magn Magn Mater. https://doi.org/10.1016/j.jmmm.2018.10.094

    Google Scholar 

  8. Shanker J, Buchi Suresh M, Suresh Babu D (2016) Synthesis, characterization and electrical properties of NdXO3 (X = Cr, Fe) nanoparticles. Mater Today Proc 3:2091–2100

    Article  Google Scholar 

  9. Polat O, Durmus Z, Coskun FM, Coskun M, Turut A (2018) Engineering the band gap of LaCrO3 doping with transition metals (Co, Pd, and Ir). J Mater Sci 53:3544–3556. https://doi.org/10.1007/s10853-017-1773-3

    Article  Google Scholar 

  10. Yan LC, Hassan J, Hashim M, Yin WS, Khaoon TF, Jeng WY (2011) Effect of sintering temperatures on the microstructure and dielectric properties of SrTiO3. World Appl Sci J 14(7):1091–1094

    Google Scholar 

  11. Khasa S, Singh P, Sanghi S, Singh N, Agarwa A (2014) Structural analysis and dielectric characterization of Aurivillius type CaSrBi2Nb2O9 ceramics. J Integr Sci Technol 2(1):13–21

    Google Scholar 

  12. Singh NK, Kumar P, Kumar H, Rai R (2010) Structural and dielectric properties of Dy2(Ba0.5R0.5)2O7 (R = W, Mo) ceramics. Adv Mater Lett 1(1):79–82

    Article  Google Scholar 

  13. Sreehari Sastry S, Tanuj Kumar L, Tiong HS (2014) Dielectric studies on benzothiazole based liquid crystals at radio frequency region. Int J Innov Res Sci Eng Technol 3(3):10212–10219

    Google Scholar 

  14. Barik SK, Choudhary RNP, Singh AK (2011) AC impedance spectroscopy and conductivity studies of Ba0.8Sr0.2TiO3 ceramics. Adv Mater Lett 2(6):419–424

    Article  Google Scholar 

  15. Mir SA, Ikram M, Sultan K, Habib Z, Kausar H, Asokan K (2015) Correlative exploration of structural, optical and electric properties of colossal dielectric Ni doped sm orthoferrites. Adv Mater Lett 6(12):1081–1087

    Article  Google Scholar 

  16. Shrivastav BD, Barde R, Mishra A, Phadake S (2013) Frequency and temperature dependence of dielectric properties of fish scales tissues. Res J Phys Sci 1(6):24–29

    Google Scholar 

  17. Sing N, Agarwal A, Sanghi S (2011) Dielectric relaxation, conductivity behavior and magnetic properties of Mg Substituted Zn–Li ferrites. Curr Appl Phys 11:783–789

    Article  Google Scholar 

  18. Jaya Prakash B, Rudramadevi BH, Buddhud S (2014) Analysis of ferroelectric, dielectric and magnetic properties of GdFeO3 nanoparticle. Ferroelectr Lett Sect 41:110–122

    Article  Google Scholar 

  19. Kleemann W, Shvartsman VV, Bedanta S, Borisov P, Tkach A, Vilarinho PM (2008) (Sr,Mn)TiO3-a magnetoelectrically coupled multiglass. J Phys: Condens Matter 20:434216

    Google Scholar 

  20. Prasad BV, Narsinga Rao G, Chen JW, Suresh Babu D (2011) Relaxor ferroelectric like giant permittivity in PrCrO3 semiconductor ceramics. Mater Chem Phys 126:918–921

    Article  Google Scholar 

  21. Miah MJ, Khan MNI, Akther Hossain AKM (2016) Weak ferromagnetism and magnetoelectric effect in multiferroic xBa0.95Sr0.05TiO3-(1-x)BiFe0.9Gd0.1O3 relaxors. J Magn Magn Mater 401:600–611

    Article  Google Scholar 

  22. Dura A, Arevalo-Lopez AM, Castillo-Martınez E, Garcıa-Guaderrama M, Moran E, Cruz MP, Fernandez F, Alario-Franco MA (2010) Magneto-thermal and dielectric properties of biferroic YCrO3 prepared by combustion synthesis. J Solid State Chem 183:1863–1871

    Article  Google Scholar 

  23. Dashan S, Choudharya RNP, Kumar A (2014) Impedance spectroscopy and conduction mechanism of multiferroic (Bi0.6K0.4)(Fe0.6Nb0.4)O3. J Phys Chem Solids 75:1376–1382

    Article  Google Scholar 

  24. Prasad NV, Chandra Sekhar M, Kumar GS (2008) Impedance spectroscopic studies on lead based perovskite materials. Ferroelectrics 366(1):55–66

    Article  Google Scholar 

  25. Basu S, Ramesh Babu K, Choudhary RNP (2012) Studies on the piezoelectric and magnetostrictive phase distribution in lead zirconate titanate–cobalt iron oxide composites. Mater Chem Phys 132:570–580

    Article  Google Scholar 

  26. Shanker J, Buchi Suresh M, Suresh Babu D (2015) Synthesis, characterization and impedance spectroscopy studies of NdFeO3 perovskite ceramics. Int J Sci Eng Res 3(7):194–197

    Google Scholar 

  27. Shanker J, Narsinga Rao G, Venkataramana K, Suresh Babu D (2018) Investigation of structural and electrical properties of NdFeO3 perovskite nanocrystalline. Phys Lett A 382:2974–2977

    Article  Google Scholar 

  28. Shanker J, Narsinga Rao G, Suresh Babu D (2018) Impedance spectroscopy and permittivity investigation of NdCrO3 perovskite ceramic nanoparticles. IOP Conf Ser Mater Sci Eng 360:012004

    Article  Google Scholar 

  29. Shanker J, Vittal Prasad B, Buchi Suresh M, Vijaya Kumar R, Suresh Babu D (2017) Electrical properties of NdCr1−xFexO3 perovskite ceramic nanoparticles—an impedance spectroscopy studies. Mater Res Bull 94:385–398

    Article  Google Scholar 

  30. Su Y, Zhang J, Feng Z, Li Z, Shen Y, Cao S (2011) Magnetic properties of rare earth HoCrO3 chromites. J Rare Earths 29(11):1060–1065

    Article  Google Scholar 

  31. Venugopal Rao B, Vittal Prasad B, Narsinga Rao G, Chou FC, Suresh Babu D (2015) Magnetization reversal in PrCrO3. Adv Mater Res 1086:96–100

    Article  Google Scholar 

  32. Wang S, Huang K, Hou C, Yuan L, Xiaofeng W, Dayong L (2015) Low temperature hydrothermal synthesis, structure and magnetic properties of RECrO3 (RE = La, Pr, Nd, Sm). Dalton Trans 44:17201–17208

    Article  Google Scholar 

  33. Kumar P, Kar M (2014) Effect of structural transition on magnetic and dielectric properties of La and Mn co-substituted BiFeO3 ceramics. Mater Chem Phys 148:968–977

    Article  Google Scholar 

Download references

Acknowledgements

One of the authors, Jada Shanker, would like to thank SRF-UGC-RGNF for providing financial assistance to carry out this work.

Funding

Funding was provided by University Grants Commission (Grant No. F117.1/201617/RGNF201517SCTEL27682/(SAIII/Website)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jada Shanker.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shanker, J., Buchi Suresh, M., Narsinga Rao, G. et al. Colossal dielectric, relaxor ferroelectric, diamagnetic and weak ferromagnetic properties of NdCrO3 perovskite nanoparticles. J Mater Sci 54, 5595–5604 (2019). https://doi.org/10.1007/s10853-018-03226-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-03226-5

Navigation