Skip to main content
Log in

Impact of position and number of nitrogen atom substitution on the curvature and hydrogen adsorption properties of metallized borophene

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Motivated by experimental observation of B36 borophene as a molecular model of bulk boron, here, we report the impact of nitrogen substitution on the electronic and chemical properties of neutral and anionic B36 clusters. Three N-doped configurations resulted from nitrogen substitution at different positions with respect to the central hexagonal hole of B36 are considered. The effect of N-doping on the structure, curvature, and π bonding pattern of the B36 is analyzed. High level of N-dopant enhances the curvature, and the cluster adopts a buckled form. We also study the binding strength between alkali metals with the pristine and N-doped substrates. Moreover, the adsorption properties of metallized substrates toward H2 molecule are explored, highlighting the role of dopant. Depending on the type of metal and the nitrogen content, the H2 adsorption energies vary in the range between − 0.11 and − 0.21 eV which fall into the range for the practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  1. Kiran B, Bulusu H, Zhai HJ, Yoo S, Zeng XC, Wang LS (2005) Planar-to-tubular structural transition in boron clusters: B20 as the embryo of single-walled boron nanotubes. Proc Natl Acad Sci USA 102:961–964

    Article  Google Scholar 

  2. Huang W, Sergeeva AP, Zhai HJ, Averkiev BB, Wang LS, Boldyrev AIA (2010) Concentric planar doubly π-aromatic B19 cluster. Nat Chem 2:202–206

    Article  Google Scholar 

  3. Popov IA, Piazza ZA, Li WL, Wang LS, Boldyrev AI (2013) A combined photoelectron spectroscopy and ab initio study of the quasi-planar B24(-) cluster. J Chem Phys 139:144307-1–144307-8

    Google Scholar 

  4. Oger E, Crawford NRM, Kelting R, Weis P, Kappes MM, Ahlrichs R (2007) Boron cluster cations: transition from planar to cylindrical structures. Angew Chem Int Ed 46:8503–8506

    Article  Google Scholar 

  5. Aihara JI, Kanno H, Ishida T (2005) Aromaticity of planar boron clusters confirmed. J Am Chem Soc 127:13324–13330

    Article  Google Scholar 

  6. Liu CH, Wang X, Ye XJ, Yan X, Zeng Z (2014) Curvature and ionization-induced reversible hydrogen storage in metalized hexagonal B36. J Chem Phys 141:194306-1–194306-8

    Google Scholar 

  7. Mukherjee S, Thilagar P (2016) Borophene: a new paradigm! Curr Sci 111:1302–1304

    Article  Google Scholar 

  8. Mannix AJ, Zhou XF, Kiraly B, Wood J, Alducin DD, Myers BD, Liu X, Fisher BL, Santiago U, Guest JR et al (2015) Synthesis of borophenes: anisotropic, two-dimensional boron polymorphs. Science 350:1513–1516

    Article  Google Scholar 

  9. Sachdev H (2015) Disclosing boron’s thinnest side. Science 350:1468–1469

    Article  Google Scholar 

  10. Tang H, Beigi S (2007) Novel precursors for boron nanotubes: the competition of two-center and three-center bonding in boron sheets. Phys Rev Lett 99:115501-1–115501-4

    Google Scholar 

  11. Yang X, Ding Y, Ni J (2008) Ab initio prediction of stable boron sheets and boron nanotubes: structure, stability, and electronic properties. Phys Rev B 77:041402-1–041402-4

    Google Scholar 

  12. Balendhran S, Walia S, Nili H, Sriam S, Bhaskaran M (2015) Elemental analogues of graphene: silicene, germanene, stanene, and phosphorene. Small 11:640–652

    Article  Google Scholar 

  13. Sachdev H, Muller F, Hufner S (2010) BN analogues of graphene: on the formation mechanism of boronitrene layers—solids with extreme structural anisotropy. Diamond Relat Mater 19:1027–1033

    Article  Google Scholar 

  14. Sergeeva PA, Popov IA, Piazza ZA, Li WL, Romanescu C, Wang L, Boldyrev AI (2014) Understanding boron through size-selected clusters: structure, chemical bonding, and fluxionality. Acc Chem Res 47:1349–1358

    Article  Google Scholar 

  15. Li S, Zhang Z, Long Z, Sun G, Qin S (2016) Comparative study on the spectral properties of boron clusters Bn0/−1(n = 38–40). Sci Rep 6:25020-1–25020-9

    Google Scholar 

  16. Piazza ZA, Hu HS, Li WL, Zhao YF, Li J, Wang LS (2014) Planar hexagonal B36 as a potential basis for extended single-atom layer boron sheets. Nat Commun 5:3113-1–3113-6

    Article  Google Scholar 

  17. Li WL, Chen Q, Tian WJ, Bai H, Zhao YF, Hu HS, Zhai HJ, Li D, Wang LS (2014) The B35 cluster with a double-hexagonal vacancy: a new and more flexible structural motif for borophene. J Am Chem Soc 136:12257–12260

    Article  Google Scholar 

  18. Rastgou A, Soleymanabadi H, Bodaghi A (2017) DNA sequencing by borophene nanosheet via an electronic response: a theoretical study. Microelectron Eng 169:9–15

    Article  Google Scholar 

  19. Kootenaei A, Ansari G (2016) B36. borophene as an electronic sensor for formaldehyde: quantum chemical analysis. Phys Lett A 380:2664–2668

    Article  Google Scholar 

  20. Jiang HR, Lu Z, Wu MC, Ciucci F, Zhao TS (2016) Borophene: a promising anode material offering high specific capacity and high rate capability for lithium-ion batteries. Nano Energy 23:97–104

    Article  Google Scholar 

  21. Zhang X, Hu J, Cheng Y, Yang H, Yau Y, Yang SA (2016) Borophene as an extremely high capacity electrode material for Li-ion and Na-ion batteries. Nanoscale 8:15340–15347

    Article  Google Scholar 

  22. Shi L, Zhao T, Xu A, Xu J (2016) Ab initio prediction of borophene as an extraordinary anode material exhibiting ultrafast directional sodium diffusion for sodium-based batteries. Sci Bull 61:1138–1144

    Article  Google Scholar 

  23. Zhao Y, Zeng S, Ni J (2016) Phonon-mediated superconductivity in borophenes. App Phys Lett 108:242601-1–242601-4

    Google Scholar 

  24. Zhang Y, Wu ZF, Gao PF, Zhang S, Wen Y (2016) Could borophene be used as a promising anode material for high-performance li ion battery? ACS Appl Mater Interfaces 8:2175–22181

    Google Scholar 

  25. Meng F, Chen X, Sun S, He J (2017) Electronic and magnetic properties of pristine and hydrogenated borophene nanoribbons. Phys E 91:106–112

    Article  Google Scholar 

  26. Ataca C, Akturk E, Ciraci S, Ustunel H (2008) High-capacity hydrogen storage by metallized graphene. Appl Phys Lett 93:043123–043125

    Article  Google Scholar 

  27. Kim D, Lee S, Hwang Y, Yun K, Chung Y (2014) hydrogen storage in li dispersed graphene with stone–wales defects: a first-principles study. Int J Hydrog Energy 39:13189–13194

    Article  Google Scholar 

  28. Yoon M, Yang S, Hicke C, Wang E, Geohegan D, Zhang Z (2008) Calcium as the superior coating metal in functionalization of carbon fullerenes for high-capacity hydrogen storage. Phys Rev Lett 100:206806–206809

    Article  Google Scholar 

  29. Chen C, Zhang J, Zhang B, Duan H (2013) Hydrogen adsorption of mg-doped graphene oxide: a first-principles study. J Phys Chem C 117:4337–4344

    Article  Google Scholar 

  30. Cabria I, Lopez MJ, Fraile S, Alonso J (2012) Adsorption and dissociation of molecular hydrogen on palladium clusters supported on graphene. J Phys Chem C 116:21179–21189

    Article  Google Scholar 

  31. Guo Y, Lan X, Cao J, Xu B, Xia Y, Yin J (2013) A comparative study of the reversible hydrogen storage behavior in several metal decorated graphyne. Int J Hydrog Energy 38:3987–3993

    Article  Google Scholar 

  32. Zhang H, Zhao M, Bu H, He X, Zhang M, Zhao L, Luo Y (2012) Ultra-high hydrogen storage capacity of li-decorated graphyne: a first-principles prediction. J Appl Phys 112:084305-1–084305-5

    Google Scholar 

  33. Lu RF, Rao D, Meng Z, Zhang X, Xu G, Liu Y, Kan E, Xiao C, Deng K (2013) Boron-substituted graphyne as a versatile material with high storage capacities of Li and H2: a multiscale theoretical study. Phys Chem Chem Phys 15:16120–16126

    Article  Google Scholar 

  34. Wan W, Wang H (2015) First-principles investigation of adsorption and diffusion of ions on pristine, defective and B-doped graphene. Materials 8:6163–6178

    Article  Google Scholar 

  35. Rao D, Zhang L, Meng Z, Zhang X, Wang Y, Qiao G, Shen X, Liu J, Lu F (2017) Ultrahigh energy storage and ultrafast ion diffusion in borophene-based anodes for rechargeable metal ion batteries. J Mater Chem A 5:2328–2338

    Article  Google Scholar 

  36. Zhou J, Wang Q, Sun Q, Jena P, Chen XS (2010) Electric field enhanced hydrogen storage on polarizable materials substrates. Proc Natl Acad Sci USA 107:2801–2806

    Article  Google Scholar 

  37. Hussain T, Islam MS, Rao GS, Panigrahi P, Gupta D, Ahuja R (2015) Hydrogen storage properties of light metal adatoms (Li, Na) decorated fluorographene monolayer. Nanotechnology 26:275401-1–275401-6

    Article  Google Scholar 

  38. Li FY, Jin P, Jiang DE, Wang L, Zhang SB, Zhaoand JJ, Chen ZF (2012) B80 and B101-103 clusters: remarkable stability of the core-shell structures established by validated density functionals. J Chem Phys 136:74302-1–074302-8

    Google Scholar 

  39. Bai H, Chen Q, Miao C, Qmu YW, Wu YB, Lu GH, Zhai HJ, Li SD (2013) Ribbon aromaticity in double-chain planar BnH22 − and Li2BnH2 nanoribbon clusters up to n = 22: lithiated boron dihydride analogues of polyenes. Phys Chem Chem Phys 15:18872–18880

    Article  Google Scholar 

  40. Romanescu C, Harding DJ, Fielicke A, Wang LS (2012) Probing the structures of neutral boron clusters using infrared/vacuum ultraviolet two color ionization: B11, B16, and B17. J Chem Phys 137:014317-1–014317-6

    Article  Google Scholar 

  41. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, et al (2013) Gaussian 09, revision D.01: Gaussian, Inc: Wallingford CT

  42. Zubarev DY, Boldyrev AI (2008) A developing paradigms of chemical bonding: adaptive natural density partitioning. Phys Chem Chem Phys 10:5207–5217

    Article  Google Scholar 

  43. Lu T Multiwfn, version 3.3.9. http://multiwfn.codeplex.com/

  44. Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comp Chem 33:580–592

    Article  Google Scholar 

  45. Chen Q, Wei GF, Tian WJ, Bai H, Liu ZP, Zhai HJ, Li SD (2014) Quasi-planar aromatic B36 and B36 clusters: all-boron analogues of coronene. Phys Chem Chem Phys 16:18282–18287

    Article  Google Scholar 

  46. Wang LS, Zhai HJ, Li SD, Li J, Boldy AI (2016) From planar boron clusters to borophene and borospherene. Proc of SPIE 10174:1017402-1–1017402-9

    Google Scholar 

  47. Legrian F, Manzhos S (2015) Aluminum doping improves the energetics of lithium, sodium, and magnesium storage in silicon. J Power Sources 274:65–70

    Article  Google Scholar 

  48. Mohajeri A, Shahsavar A (2017) Tailoring the optoelectronic properties of graphyne and graphdiyne: nitrogen/sulfur dual doping versus oxygen containing functional groups. J Mater Sci 52:5366–5379

    Article  Google Scholar 

  49. Zhou Z, Gao X, Yan J, Song D (2006) Doping effects of B and N on hydrogen adsorption in single-walled carbon nanotubes through density functional calculations. Carbon 44:939–947

    Article  Google Scholar 

  50. Correa DJ, Florez F, Mora-Ramosb ME (2016) Ab initio study of hydrogen chemisorption in nitrogen-doped carbon nanotubes. Phys Chem Chem Phys 18:25663–25670

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Shiraz University Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Afshan Mohajeri.

Ethics declarations

Conflict of interest

There is no conflict of interest regarding the publication of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10853_2017_1900_MOESM1_ESM.docx

The structural properties of base and doped borophene as well as hydrogen adsorption properties for metallized substrates are given in supplementary material. (DOCX 336 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahsavar, A., Mohajeri, A. Impact of position and number of nitrogen atom substitution on the curvature and hydrogen adsorption properties of metallized borophene. J Mater Sci 53, 4540–4553 (2018). https://doi.org/10.1007/s10853-017-1900-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1900-1

Keywords

Navigation