Skip to main content
Log in

Experimental investigation on the effect of carbon nanotube additive on the field-induced viscoelastic properties of magnetorheological elastomer

  • Composites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The additives improve the properties of magnetorheological elastomer by modifying the surface of ferromagnetic filler particles or by varying the properties of a host polymer matrix. In this study, effect of carbon nanotube additive on the viscoelastic properties of magnetorheological elastomer reinforced with optimum quantity of ferromagnetic filler is studied. Room temperature vulcanizing silicone elastomer-based test samples are prepared by mixing the elastomer with the carbon nanotube and carbonyl iron powder blend obtained from ultrasonication. Viscoelastic properties are measured by adopting the dynamic blocked transfer stiffness method. The results revealed that the properties of magnetorheological elastomer vary significantly with the inclusion of carbon nanotube. With the addition of 0.5 wt% carbon nanotube, the zero field dynamic stiffness of magnetorheological elastomer is enhanced by 36.7% and the loss factor is increased by 17.2%. The enhancement in zero field properties led to the least field-induced enhancement for magnetorheological elastomer doped with 0.5 wt% carbon nanotube. A relatively larger flexibility of pure magnetorheological elastomer samples had resulted in the maximum field-induced enhancement of 48.04%. Among the prepared test samples with carbon nanotube addition, the sample loaded with 0.25 wt% carbon nanotube exhibited a pronounced stiffness enhancement and lower loss factor. This substantiated the existence of an optimum limit for carbon nanotube additive. The present study also confirmed the feasibility of developing MRE tailor-made to suit the particular application by selecting a proper composition of matrix, filler and the additives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Rivin EI (1995) Vibration isolation of precision equipment. Precis Eng 17(1):41–56

    Article  Google Scholar 

  2. Ellison J, Ahmadi G, Kehoe M (2001) Passive vibration control of airborne equipment using a circular steel ring. J Sound Vib 246(1):1–28

    Article  Google Scholar 

  3. Stelzer GJ, Schulz MJ, Kim J et al (2003) A magnetorheological semi-active isolator to reduce noise and vibration transmissibility in automobiles. J Intell Mater Syst Struct 14(12):743–765

    Article  Google Scholar 

  4. Behrooz M, Sutrisno J, Zhang L et al (2015) Behavior of magnetorheological elastomers with coated particles. Smart Mater Struct 24(3):35026. https://doi.org/10.1088/0964-1726/24/3/035026

    Article  Google Scholar 

  5. Jolly MR, Carlson JD, Muñoz BC (1999) A model of the behaviour of magnetorheological materials. Smart Mater Struct 5(5):607–614

    Article  Google Scholar 

  6. Zając P, Kaleta J, Lewandowski D et al (2010) Isotropic magnetorheological elastomers with thermoplastic matrices: structure, damping properties and testing. Smart Mater Struct 19(4):45014

    Article  Google Scholar 

  7. Lokander M, Stenberg B (2003) Performance of isotropic magnetorheological rubber materials. Polym Test 22(6):677–680

    Article  Google Scholar 

  8. Chen L, Gong XL, Li WH (2008) Effect of carbon black on the mechanical performances of magnetorheological elastomers. Polym Test 27(3):340–345

    Article  Google Scholar 

  9. Li R, Sun LZ (2011) Dynamic mechanical behavior of magnetorheological nanocomposites filled with carbon nanotubes. Appl Phys Lett 99(13):2012–2015

    Google Scholar 

  10. Malecki P, Krolewicz M, Krzak J et al (2015) Dynamic mechanical analysis of magnetorheological composites containing silica-coated carbonyl iron powder. J Intell Mater Syst Struct 26(14):1899–1905

    Article  Google Scholar 

  11. Chen D, Yu M, Zhu M et al (2016) Carbonyl iron powder surface modification of magnetorheological elastomers for vibration absorbing application. Smart Mater Struct 25(11):115005

    Article  Google Scholar 

  12. Yang J, Gong X, Deng H et al (2012) Investigation on the mechanism of damping behavior of magnetorheological elastomers. Smart Mater Struct 21:125015

    Article  Google Scholar 

  13. Dong X, Ma N, Qi M et al (2012) The pressure-dependent MR effect of magnetorheological elastomers. Smart Mater Struct 21(7):75014

    Article  Google Scholar 

  14. Wang Y, Hu Y, Chen L et al (2006) Effects of rubber/magnetic particle interactions on the performance of magnetorheological elastomers. Polym Test 25(2):262–267

    Article  Google Scholar 

  15. Kaleta J, Królewicz M, Lewandowski D (2011) Magnetomechanical properties of anisotropic and isotropic magnetorheological composites with thermoplastic elastomer matrices. Smart Mater Struct 20(8):85006

    Article  Google Scholar 

  16. Qiao X, Lu X, Li W et al (2012) Microstructure and magnetorheological properties of the thermoplastic magnetorheological elastomer composites containing modified carbonyl iron particles and poly(styrene-b-ethylene-ethylenepropylene-b-styrene) matrix. Smart Mater Struct 21(11):115028

    Article  Google Scholar 

  17. Aishah S, Aziz A, Mazlan SA et al (2016) Effects of multiwall carbon nanotubes on viscoelastic properties of magnetorheological elastomers. Smart Mater Struct 25:77001

    Article  Google Scholar 

  18. Ge L, Gong X, Fan Y, Xuan S (2013) Preparation and mechanical properties of the magnetorheological elastomer based on natural rubber/rosin glycerin hybrid matrix. Smart Mater Struct 22(11):115029

    Article  Google Scholar 

  19. Rabindranath R, Böse H (2013) On the mobility of iron particles embedded in elastomeric silicone matrix. J Phys Conf Ser 412:12034

    Article  Google Scholar 

  20. Gong XL, Zhang XZ, Zhang PQ (2005) Fabrication and characterization of isotropic magnetorheological elastomers. Polym Test 24(5):669–676

    Article  Google Scholar 

  21. Wu J, Gong XL, Chen L et al (2009) Preparation and characterization of isotropic polyurethane magnetorheological elastomer through in situ polymerization. J Appl Polym Sci 114:901–910

    Article  Google Scholar 

  22. Wang Y, Zhang X, Oh J et al (2015) Fabrication and properties of magnetorheological elastomers based on CR/ENR self-crosslinking blends. Smart Mater Struct 24(9):95006

    Article  Google Scholar 

  23. Tian TF, Li WH, Alici G, Du H et al (2011) Microstructure and magnetorheology of graphite-based MR elastomers. Rheol Acta 50(9–10):825–836

    Article  Google Scholar 

  24. Bica I, Anitas EM, Bunoiu M et al (2014) Hybrid magnetorheological elastomer: Influence of magnetic field and compression pressure on its electrical conductivity. J Ind Eng Chem 20(6):3994–3999

    Article  Google Scholar 

  25. Yang J, Gong XL, Zong L et al (2013) Silicon carbide-strengthened magnetorheological elastomer: preparation and mechanical property. Polym Eng Sci 53:2615–2623

    Article  Google Scholar 

  26. Zhang XX, Wen GH, Huang S et al (2001) Magnetic properties of Fe nanoparticles trapped at the tips of the aligned carbon nanotubes. J Magn Magn Mater 231:9–12

    Article  Google Scholar 

  27. Zilli D, Chiliotte C, Escobar MM et al (2005) Magnetic properties of multi-walled carbon nanotube-epoxy composites. Polymer 46(16):6090–6095

    Article  Google Scholar 

  28. Schadler LS, Brinson LC, Sawyer WG (2007) Polymer nanocomposites: a small part of the story. JOM 59(3):53–60

    Article  Google Scholar 

  29. Davis LC (1999) Model of magnetorheological elastomers. J Appl Phys 85(6):3348–3351

    Article  Google Scholar 

  30. Udupa G, Rao SS, Gangadharan KV (2015) Fabrication of functionally graded carbon nanotube-reinforced aluminium matrix laminate by mechanical powder metallurgy technique—part I. J Mater Sci Eng 4(3):1000169

    Google Scholar 

  31. BS I 108460-2 (2008) Acoustics and vibration—measurement of vibro-acoustic transfer properties of resilient elements—part 2: direct method for determination of the dynamic stiffness of resilient supports for translatory motion (ISO 10846-2:2008)

  32. Brown RP (1996) Physical testing of rubber. Chapman and Hall, London

    Book  Google Scholar 

  33. Lakes R (2009) Viscoelastic materials. Cambridge University Press, Cambridge

    Book  Google Scholar 

  34. Poojary UR, Hegde S, Gangadharan KV (2016) Dynamic blocked transfer stiffness method of characterizing the magnetic field and frequency dependent dynamic viscoelastic properties of MRE. Korea-Aust Rheol J 28(4):301–313

    Article  Google Scholar 

  35. Lion A, Kardelky C (2004) The Payne effect in finite viscoelasticity: constitutive modelling based on fractional derivatives and intrinsic time scales. Int J Plast 20(7):1313–1345

    Article  Google Scholar 

  36. Poojary UR, Gangadharan KV (2017) Magnetic field and frequency dependent LVE limit characterization of magnetorheological elastomer. J Braz Soc Mech Sci Eng 39(4):1365–1373

    Article  Google Scholar 

  37. Stacer RG, Hubner C, Husband DM (1990) Binder/filler interaction and the nonlinear behavior of highly-filled elastomers. Rubber Chem Technol 63:488–502

    Article  Google Scholar 

  38. Osman MA, Atallah A (2006) Effect of the particle size on the viscoelastic properties of filled polyethylene. Polymer 47(7):2357–2368

    Article  Google Scholar 

  39. Feng LJ, Gong XL (2008) Dynamic damping property of magnetorheological elastomer. J Cent South Univ Technol 15:261–265

    Google Scholar 

  40. Yu M, Qi S, Fu J et al (2017) Understanding the reinforcing behaviors of polyaniline-modified carbonyl iron particles in magnetorheological elastomer based on polyurethane/epoxy resin IPNs matrix. Compos Sci Technol 139:36–46

    Article  Google Scholar 

  41. Liao G, Gong X, Xuan S, Guo C, Zong L (2012) Magnetic-field-induced normal force of magnetorheological elastomer under compression status. Ind Eng Chem Res 51(8):3322–3328

    Article  Google Scholar 

  42. Chen L, Jerrams S (2011) A rheological model of the dynamic behavior of magnetorheological elastomers. J Appl Phys 110:013513–6

    Google Scholar 

  43. Ju BX, Yu M, Fu J et al (2012) A novel porous magnetorheological elastomer: preparation and evaluation. Smart Mater Struct 21:35001

    Article  Google Scholar 

  44. Chen L, Gong XL (2008) Damping of magnetorheological elastomers. Chin J Chem Phys 21(6):581–585

    Article  Google Scholar 

  45. Zhu J, Xu Z, Guo Y (2013) Experimental and modeling study on magnetorheological elastomers with different matrices. J Mater Civ Eng 25(11):1762–1771

    Article  Google Scholar 

  46. Chen Y, Xu C (2011) Specific nonlinear viscoelasticity behaviors of natural rubber and zinc dimethacrylate composites due to multi-crosslinking bond interaction by using rubber process analyzer 2000. Polym Compos 32:1593–1600

    Article  Google Scholar 

  47. Ginic M et al (2000) Viscoelastic behaviour of filled, and unfilled, EPDM elastomer. Thermochim Acta 357:211–216

    Article  Google Scholar 

  48. Funt JM (1988) Dynamic testing and reinforcement of rubber. Rubber Chem Technol 61:842–865

    Article  Google Scholar 

  49. Li WH, Zhou Y, Tian TF (2010) Viscoelastic properties of MR elastomers under harmonic loading. Rheol Acta 49:733–740

    Article  Google Scholar 

  50. Gong XL, Xu Y, Xuan S, Guo C, Zong L (2012) The investigation on the nonlinearity of plasticine-like magnetorheological material under oscillatory shear rheometry. J Rheol 56(6):1375–1391

    Article  Google Scholar 

  51. Jong L (2005) Viscoelastic properties of Ionic polymer composites reinforced by Soy protein isolate. J Polym Sci B Polym Phys 43:3503–3733

    Article  Google Scholar 

  52. Deshpande AP, Krishnan JM, Kumar S (2010) Rheology of complex fluids. Springer, Berlin

    Google Scholar 

  53. Fuente JL et al (2002) Viscoelastic behaviour in a Hydroxyl-Terminated Polybutadiene gum and its highly filled composites: effect of the type of filler on the relaxation process. J Appl Polym Sci 88:1705–1712

    Article  Google Scholar 

  54. Leopoldes J et al (2002) Influence of filler-rubber interactions on the viscoelastic properties of carbon-black-filled rubber compounds. J Appl Polym Sci 91:577–588

    Article  Google Scholar 

  55. Yurkeli K (2001) Structure dynamics of carbon black filled elastomer. J Polym Sci B Polym Phys 39:256–275

    Article  Google Scholar 

  56. Li WH, Zhang XZ (2010) A study of the magnetorheological effect of bimodal particle based magnetorheological elastomers. Smart Mater Struct 19(3):35002–8

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the funding support from SOLVE: The Virtual Lab @ NITK (Grant Number: No.F.16-35/2009-DL Ministry of Human Resources Development) and experimental facility provided by Centre for System Design (CSD) (csd.nitk.ac.in): A Centre of excellence at NITK-Surathkal.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Umanath R. Poojary.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poojary, U.R., Hegde, S. & Gangadharan, K.V. Experimental investigation on the effect of carbon nanotube additive on the field-induced viscoelastic properties of magnetorheological elastomer. J Mater Sci 53, 4229–4241 (2018). https://doi.org/10.1007/s10853-017-1883-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1883-y

Keywords

Navigation