Skip to main content
Log in

Ultrasonic disintegration of tungsten trioxide pseudomorphs after ammonium paratungstate as a route for stable aqueous sols of nanocrystalline WO3

  • Ceramics
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A new facile method is proposed for the preparation of aqueous sols of highly crystalline tungsten trioxide with a particle size of 60–150 nm, containing no organic stabilizers/surfactants. These sols possess high sedimentation stability, which is quite unusual for inorganic colloidal systems containing relatively large particles, with a rather high density (ρ c(WO3) = 7.3 g/cm3). The method is based on the thermal decomposition of ammonium paratungstate, followed by dispersing the resulting powders in water under ultrasonic treatment. Thermal decomposition of ammonium paratungstate, and the composition and structure of the resulting tungsten trioxide and its aqueous dispersions, were investigated with thermal analysis combined with the mass spectrometry of gaseous thermolysis products, powder X-ray diffraction, scanning electron microscopy, low-temperature nitrogen adsorption, IR spectroscopy and dynamic light scattering. It has been demonstrated that the high sedimentation stability of WO3 results from electrostatic stabilization, which might be caused by the formation of tungstic acid on the surface of WO3 particles when they come into contact with water. The nanocrystalline WO3 obtained can be used to produce gas sensors for ammonia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Zheng H, Ou JZ, Strano MS, Kaner RB, Mitchell A, Kalantar-Zadeh K (2011) Nanostructured tungsten oxide—properties, synthesis, and applications. Adv Funct Mater 21:2175–2196

    Article  Google Scholar 

  2. Michalak F, Rault L, Aldebert P (1992) Electrochromism with colloidal WO3 and IrO2. Opt Mater Technol Energy Eff Sol Energy Convers XI Chromogenics Smart Windows 1728:278–288

    Google Scholar 

  3. He T, Yao J (2007) Photochromic materials based on tungsten oxide. J Mater Chem 17:4547–4557

    Article  Google Scholar 

  4. Bedja I, Hotchandani S, Kamat PV (1993) Photoelectrochemistry of quantized tungsten trioxide colloids: electron storage, electrochromic, and photoelectrochromic effects. J Phys Chem 97:11064–11070

    Article  Google Scholar 

  5. Kalhori H, Ranjbar M, Salamati H, Coey JMD (2016) Flower-like nanostructures of WO3: fabrication and characterization of their in-liquid gasochromic effect. Sens Actuators B 225:535–543

    Article  Google Scholar 

  6. Kamat PV, Vinodgopal K (1996) Sonochromic effect in WO3 colloidal suspensions. Langmuir 12:5739–5741

    Article  Google Scholar 

  7. Yamazaki S, Yamate T, Adachi K (2013) Photocatalytic activity of aqueous WO3 sol for the degradation of orange II and 4-chlorophenol. Appl Catal A 454:30–36

    Article  Google Scholar 

  8. Takeuchi M, Shimizu Y, Yamagawa H, Nakamuro T, Anpo M (2011) Preparation of the visible light responsive N3–doped WO3 photocatalyst by a thermal decomposition of ammonium paratungstate. Appl Catal B 110:1–5

    Article  Google Scholar 

  9. Szilágyi IM, Fórizs B, Rosseler O, Szegedi Á, Németh P, Király P, Tárkányi G, Vajna B, Varga-Josepovits K, László K, Tóth AL, Baranyai P, Leskelä M (2012) WO3 photocatalysts: influence of structure and composition. J Catal 294:119–127

    Article  Google Scholar 

  10. Nandiyanto ABD, Arutanti O, Ogi T, Iskandar F, Kim TO, Okuyama K (2013) Synthesis of spherical macroporous WO3 particles and their high photocatalytic performance. Chem Eng Sci 101:523–532

    Article  Google Scholar 

  11. Alexander BD, Kulesza P, Rutkowska I, Solarska R, Augustynski J (2008) Metal oxide photoanodes for solar hydrogen production. J Mater Chem 18:2298–2303

    Article  Google Scholar 

  12. Mansour SAA, Mohamed MA, Zaki MI (1988) Thermal decomposition and the creation of reactive solid surfaces. V. The genesis course of the WO3 catalyst from its ammonium paratungstate precursor. Thermochim Acta 129:187–196

    Article  Google Scholar 

  13. Ross JRH (2012) Heterogeneous catalysis. Fundamentals and applications. Elsevier, Amsterdam

    Google Scholar 

  14. Siciliano T, Tepore A, Micocci G, Serra A, Manno D, Filippo E (2008) WO3 gas sensors prepared by thermal oxidization of tungsten. Sens Actuators B 133:321–326

    Article  Google Scholar 

  15. Kim HJ, Lee JH (2014) Highly sensitive and selective gas sensors using p-type oxide semiconductors: overview. Sens Actuators B 192:607–627

    Article  Google Scholar 

  16. Wetchakun K, Samerjai T, Tamaekong N, Liewhiran C, Siriwong C, Kruefu V, Wisitsoraat A, Tuantranont A, Phanichphant S (2011) Semiconducting metal oxides as sensors for environmentally hazardous gases. Sens Actuators B 160:580–591

    Article  Google Scholar 

  17. Long H, Zeng W, Zhang H (2015) Synthesis of WO3 and its gas sensing: a review. J Mater Sci Mater Electron 26:4698–4707

    Article  Google Scholar 

  18. Sawada S (1956) Thermal and electrical properties of tungsten oxide (WO3). J Phys Soc Jpn 11:1237–1246

    Article  Google Scholar 

  19. Tilley RJD (1995) The crystal chemistry of the higher tungsten oxides. Int J Refract Met Hard Mater 13:93–109

    Article  Google Scholar 

  20. Bartha L, Kiss AB, Szalay T (1995) Chemistry of tungsten oxide bronzes. Int J Refract Met Hard Mater 13:77–91

    Article  Google Scholar 

  21. Vogt T, Woodward PM, Hunter BA (1999) The high-temperature phases of WO3. J Solid State Chem 144:209–215

    Article  Google Scholar 

  22. Boulova M, Lucazeau G (2002) Crystallite nanosize effect on the structural transitions of WO3 studied by Raman spectroscopy. J Solid State Chem 167:425–434

    Article  Google Scholar 

  23. Vaddiraju S, Chandrasekaran H, Sunkara MK (2003) Vapor phase synthesis of tungsten nanowires. J Am Chem Soc 125:10792–10793

    Article  Google Scholar 

  24. Soultanidis N, Zhou W, Kiely CJ, Wong MS (2012) Solvothermal synthesis of ultrasmall tungsten oxide nanoparticles. Langmuir 28:17771–17777

    Article  Google Scholar 

  25. Choi HG, Jung YH, Kim DK (2005) Solvothermal synthesis of tungsten oxide nanorod/nanowire/nanosheet. J Am Ceram Soc 88:1684–1686

    Article  Google Scholar 

  26. Koltypin Y, Nikitenko SI, Gedanken A (2002) The sonochemical preparation of tungsten oxide nanoparticles. J Mater Chem 12:1107–1110

    Article  Google Scholar 

  27. Contado C, Argazzi R (2011) Sedimentation field flow fractionation and flow field flow fractionation as tools for studying the aging effects of WO3 colloids for photoelectrochemical uses. J Chromatogr A 1218:4179–4187

    Article  Google Scholar 

  28. Nenadovic MT, Rajh T, Micic OI, Nozik AJ (1984) Electron transfer reactions and flat-band potentials of tungsten(VI) oxide colloids. J Phys Chem 88:5827–5830

    Article  Google Scholar 

  29. Sheng T, Chavvakula PP, Cao B, Yue N, Zhang Y, Zhang H (2014) Growth of ultra-long sodium tungsten oxide and tungsten oxide nanowires: effects of impurity and residue deposition. J Cryst Growth 395:61–67

    Article  Google Scholar 

  30. Iwu KO, Galeckas A, Rauwel P, Kuznetsov AY, Norby T (2012) “One-dimensional WO3 and its hydrate: one-step synthesis, structural and spectroscopic characterization. J Solid State Chem 185:245–252

    Article  Google Scholar 

  31. Zhang H, Duan G, Li Y, Xu X, Dai Z, Cai W (2012) Leaf-like tungsten oxide nanoplatelets induced by laser ablation in liquid and subsequent aging. Cryst Growth Des 12:2646–2652

    Article  Google Scholar 

  32. Petrícek V, Dušek M, Palatinus L (2014) Crystallographic computing system JANA2006: general features. Z Krist 229:345–352

    Google Scholar 

  33. Saltykov SA (1976) Stereometricheskaya metallographiya (Stereometric metallography). Metallurgiya: Moscow, Russia. (In Russian)

  34. Vander Voort GF (1984) Metallography: principles and practice. ASM International, New York

    Google Scholar 

  35. van Put JW, Verkroost TW, Sonneveld EJ (1990) X-ray powder diffraction data and unit cells of ammonium paratungstate tetrahydrate. Powder Diffr 5:167–169

    Article  Google Scholar 

  36. Fait MJG, Lunk HJ, Feist M, Schneider M, Dann JN, Frisk TA (2008) Thermal decomposition of ammonium paratungstate tetrahydrate under non-reducing conditions. Characterization by thermal analysis, X-ray diffraction and spectroscopic methods. Thermochim Acta 469:12–22

    Article  Google Scholar 

  37. Fait MJG, Moukhina E, Feist M, Lunk HJ (2016) Thermal decomposition of ammonium paratungstate tetrahydrate: new insights by a combined thermal and kinetic analysis. Thermochim Acta 637:38–50

    Article  Google Scholar 

  38. French GJ, Sale FR (1981) A re-investigation of the thermal decomposition of ammonium paratungstate. J Mater Sci 16:3427–3436

    Article  Google Scholar 

  39. Kalpakli AO, Arabaci A, Kahruman C, Yusufoglu I (2013) Thermal decomposition of ammonium paratungstate hydrate in air and inert gas atmospheres. Int J Refract Met Hard Mater 37:106–116

    Article  Google Scholar 

  40. van Put JW (1995) Crystallisation and processing of ammonium paratungstate (APT). Int J Refract Met Hard Mater 13:61–76

    Article  Google Scholar 

  41. Howard CJ, Stokes HT (2005) Structures and phase transitions in perovskites—a group-theoretical approach. Acta Cryst. A A61:93–111

    Article  Google Scholar 

  42. Sawada S (1010) Thermal and electrical properties and crystal structure of tungsten oxide at high temperatures. Phys Rev 1953:91

    Google Scholar 

  43. Leute V (1966) Das Wolframtrioxid und seine Reaktion mit den Oxiden zweiwertiger Metalle. Z Phys Chem 48:307–318

    Article  Google Scholar 

  44. Salje E (1977) The orthorhombic phase of WO3. Acta Cryst. B 33:574–577

    Article  Google Scholar 

  45. Putnis A (2002) Mineral replacement reactions: from macroscopic observations to microscopic mechanisms. Min Mag 66:689–708

    Article  Google Scholar 

  46. Rodriguez-Navarro C, Kudlacz K, Ruiz-Agudo E (2012) The mechanism of thermal decomposition of dolomite: new insights from 2D-XRD and TEM analyses. Am Mineral 97:38–51

    Article  Google Scholar 

  47. Shukla AK, Ercius P, Gautam ARS, Cabana J, Dahmen U (2014) Electron tomography analysis of reaction path during formation of nanoporous NiO by solid state decomposition. Cryst Growth Des 14:2453–2459

    Article  Google Scholar 

  48. Zaikovskii VI, Plyasova LM, Ziborov AV, Prudnikova OY, Yur’eva TM (1991) The thermal decomposition of zinc hydroxocarbonate. J Struct Chem 31:692–697

    Article  Google Scholar 

  49. Diehl R, Brandt G, Salje E (1978) The crystal structure of triclinic WO3. Acta Crystallogr Sect B 34:1105–1111

    Article  Google Scholar 

  50. Woodward PM, Sleight AW, Vogt T (1995) Structure refinement of triclinic tungsten trioxide. J Phys Chem Solids 56:1305–1315

    Article  Google Scholar 

  51. Bevan DJM, Shelton JP, Anderson JS (1948) 351. Properties of some simple oxides and spinels at high temperatures. J Chem Soc 56:1305–1315

    Google Scholar 

  52. Merkle R, Maier J (2005) On the Tammann-rule. Z Anorg Allg Chemie 631:1163–1166

    Article  Google Scholar 

  53. Perrin D (1969) Dissociation constants of inorganic acids and bases in aqueous solution. Pure Appl Chem 20:133–236

    Article  Google Scholar 

  54. Cruywagen JJ (2000) Protonation, oligomerization, and condensation reactions of vanadate(V), molybdate(VI), and tungstate (VI). Adv Inorg Chem 49:127–182

    Article  Google Scholar 

  55. Nakagawa I, Shimanouchi T (1964) Infrared absorption spectra of aquo complexes and the nature of co-ordination bonds. Spectrochim Acta 20:429–439

    Article  Google Scholar 

  56. Kung MC, Kung HH (1985) IR studies of NH3, pyridine, CO, and NO adsorbed on transition metal oxides. Catal Rev 27:425–460

    Article  Google Scholar 

  57. Rout CS, Hegde M, Govindaraj A, Rao CNR (2007) Ammonia sensors based on metal oxide nanostructures. Nanotechnology 18:205504

    Article  Google Scholar 

  58. Gurlo A, Sahm M, Oprea A, Barsan N, Weimar U (2004) A p- to n-transition on α-Fe2O3-based thick film sensors studied by conductance and work function change measurements. Sens Actuators B 102:291–298

    Article  Google Scholar 

  59. Wu Y-Q, Hu M, Wei X-Y (2014) A study of transition from n- to p-type based on hexagonal WO3 nanorods sensor. Chin Phys B. 23:40704

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Russian Science Foundation (Grant 16-13-10399). This research was performed using the equipment of the JRC PMR IGIC RAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Baranchikov.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2118 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shekunova, T.O., Baranchikov, A.E., Yapryntsev, A.D. et al. Ultrasonic disintegration of tungsten trioxide pseudomorphs after ammonium paratungstate as a route for stable aqueous sols of nanocrystalline WO3 . J Mater Sci 53, 1758–1768 (2018). https://doi.org/10.1007/s10853-017-1668-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1668-3

Keywords

Navigation