Skip to main content
Log in

Surface photovoltage inversion and photocatalytic properties of PbI2 microcrystals under sub-bandgap illumination

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Surface photovoltage inversion was found in PbI2 microcrystals, manifested as a significant increase in the absolute value of surface barrier height under sub-bandgap illumination. The corresponding surface states located at 0.43 eV above the valence band was detected, and the magnitude of photovoltage inversion was found to increase with increasing applied field strength. Besides, transient surface photovoltage responses and the time constants of the relaxation showed a dependence on the wavelength of illumination. When irradiated with 518–632 nm, the exciton together with the lead ion vacancy caused the population of holes in the surface state; while under 700-nm light irradiation, holes depopulation occurred on the surface. Transient surface photovoltage results show that the relaxation of the sub-bandgap surface photovoltage is exponential with long time constant. The different charge transportation processes agree well with the photocatalytic degradation of MO experiments under different wavelength irradiation. It is revealed that the exciton and the surface states could significantly affect the movement of photogenerated charge carriers, which lead to different degradation results of MO. These findings demonstrate a model involving photostimulated population of surface states for the study of surfaces of wide energy gap semiconductors, which shows the highly selective control of photogenerated charge carriers’ behaviors by tuning the wavelength of irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Scheme 1

Similar content being viewed by others

References

  1. Sun H, Zhu XH, Yang DY, Yang J, Gao XY, Li X (2014) Electrical characteristics of lead iodide crystal devices on flexible substrate under mechanical tensile strain. Phys Status Solidi A 211:823–827

    Article  Google Scholar 

  2. Ando M, Yazaki M, Katayama I, Ichida H, Wakaiki S, Kanematsu Y, Takeda J (2012) Photoluminescence dynamics due to biexcitons and exciton–exciton scattering in the layered-type semiconductor PbI2. Phys Rev B 86:155206-1–155206-6

    Article  Google Scholar 

  3. Sengupta A, Jiang B, Mandal KC, Zhang JZ (1999) Ultrafast electronic relaxation dynamics in PbI2 semiconductor colloidal nanoparticles: a femtosecond transient absorption study. J Phys Chem B 103:3128–3137

    Article  Google Scholar 

  4. Makino T, Watanabe M, Hayashi T, Ashida M (1998) Time-resolved luminescence of exciton polaritons in PbI2. Phys Rev B 57:3714–3717

    Article  Google Scholar 

  5. Watanabe M, Hayashi T (1994) Polariton relaxation and bound exciton formation in PbI2 studied by excitation spectra. J Phys Soc Jpn 63:785–794

    Article  Google Scholar 

  6. Ahuja R, Arwin H, Ferreira SA, Persson C, Osorio-Guillén JM, Souza AJ, Moyses AC, Veje E, Veissid N, An CY (2002) Electronic and optical properties of lead iodide. J Appl Phys 92:7219–7224

    Article  Google Scholar 

  7. Sandroff C, Hwang D, Chung W (1986) Carrier confinement and special crystallite dimensions in layered semiconductor colloids. Phys Rev B 33:5953–5955

    Article  Google Scholar 

  8. Goto T, Tanaka H (1994) Exciton study in PbI2 microcrystallites by pump-probe method. Solid State Commun 89:17–21

    Article  Google Scholar 

  9. Zhou HP, Chen Q, Li G, Luo S, Song TB, Duan HS, Hong Z, You J, Liu Y, Yang Y (2014) Interface engineering of highly efficient perovskite solar cells. Science 345:542–546

    Article  Google Scholar 

  10. Zhang JY, Song T, Zhang ZJ, Ding K, Huang F, Sun BQ (2015) Layered ultrathin PbI2 single crystals for high sensitivity flexible photodetectors. J Mater Chem C 3:4402–4406

    Article  Google Scholar 

  11. Ahmad S, Pawan KK, Beeson HJ, Abate A, Deschler F, Credgington D, Steiner U, Prakash GV, Baumberg JJ (2015) Strong photocurrent from two-dimensional excitons in solution-processed stacked perovskite semiconductor sheets. ACS Appl Mater Interfaces 7:25227–25236

    Article  Google Scholar 

  12. Dugan AE, Henisch HK (1968) Defect energy-level structure of PbI2 single crystals. Phys Rev 171:1047–1051

    Article  Google Scholar 

  13. Ponpon JP, Stuck R, Amann M (2000) Selective trap filling induced by electron pulse excitation during TSC measurement in PbI2. Appl Phys A 71:137–139

    Google Scholar 

  14. Baltog I, Piticu I, Constantinescu M, Ghita C, Ghita L (1979) Optical investigations of PbI2 single crystals after thermal treatment. Phys Status Solidi (a) 52:103–110

    Article  Google Scholar 

  15. Wang XL, Feng ZC, Shi JY, Jia GQ, Shen S, Zhou J, Li C (2010) Trap states and carrier dynamics of TiO2 studied by photoluminescence spectroscopy under weak excitation condition. Phys Chem Chem Phys 12:7083–7090

    Article  Google Scholar 

  16. Ke SC, Wang TC, Wong MS, Gopal NO (2006) Low temperature kinetics and energetics of the electron and hole traps in irradiated TiO2 nanoparticles as revealed by EPR spectroscopy. J Phys Chem B 110:11628–11634

    Article  Google Scholar 

  17. Li X, Feng DH, Tong HF, Jia TQ, Deng L, Sun ZR, Xu ZZ (2014) Hole surface trapping dynamics directly monitored by electron spin manipulation in CdS nanocrystals. J Phys Chem Lett 5:4310–4316

    Article  Google Scholar 

  18. Wu XX, Trinh MT, Niesner D, Zhu HM, Norman Z, Owen JS, Yaffe O, Kudisch BJ, Zhu XY (2015) Trap states in lead iodide perovskites. J Am Chem Soc 137:2089–2096

    Article  Google Scholar 

  19. Veamatahau A, Jiang B, Seifert T, Makuta T, Latham K, Kanehara M, Teranishi T, Tachibana Y (2015) Origin of surface trap states in CdS quantum dots: relationship between size dependent photoluminescence and sulfur vacancy trap states. Phys Chem Chem Phys 17:2850–2858

    Article  Google Scholar 

  20. Fujishima A, Zhang X, Tryk DA (2008) TiO2 photocatalysis and related surface phenomena. Surf Sci Rep 63:515–582

    Article  Google Scholar 

  21. Henderson MA (2011) A surface science perspective on TiO2 photocatalysis. Surf Sci Rep 66:185–297

    Article  Google Scholar 

  22. Nosaka Y, Fukuyama T, Horiuchi M, Fujii N (1993) Formation and photoreaction of PbI2, HgI2, and BiI3 layered ultrasmall particles. Isr J Chem 33:71–75

    Article  Google Scholar 

  23. Dag I, Lifshitz E (1996) Dynamics of recombination processes in PbI2 nanocrystals embedded in porous silica films. J Phys Chem 100:8962–8972

    Article  Google Scholar 

  24. Baibarac M, Preda N, Mihut L, Baltog I, Lefrant S, Mevellec JY (2004) On the optical properties of micro- and nanometric size PbI2 particles. J Phys: Condens Matter 16:2345–2356

    Google Scholar 

  25. Gnatenko YP, Bukivskij PM, Piryatinski YP, Bukivskii A, Skubenko PA, Gamernyk RV (2012) Time-resolved photoluminescence spectroscopy of excitons in layered semiconductor PbI2 nanoclusters. J Appl Phys 112:093708-1–093708-5

    Google Scholar 

  26. Betancourt-Riera R, Riera R, Rosas R, Nieto JM (2008) Electron Raman scattering in asymmetrical multiple quantum wells system: Fröhlich interaction. Physica E 40:785–794

    Article  Google Scholar 

  27. Baibaraca M, Smarandaa I, Scocioreanua M, Mitranb RA, Enculescua M, Galatanua M, Baltog I (2015) Exciton-phonon interaction in PbI2 revealed by Raman and photoluminescence studies using excitation light overlapping the fundamental absorption edge. Mater Res Bull 70:762–772

    Article  Google Scholar 

  28. Preda N, Mihut L, Baibarac M, Baltog I (2009) Intercalation of layered metal iodides with pyridine evidenced by Raman spectroscopy. Acta Phys Pol, A 116:81–83

    Article  Google Scholar 

  29. Baltog I, Baibarac M, Lefrant S (2009) Quantum well effect in bulk PbI2 crystals revealed by the anisotropy of photoluminescence and Raman spectra. J Phys: Condens Matter 21:25507–25515

    Google Scholar 

  30. Mu R, Tung YS, Ueda A, Henderson DO (1996) Chemical and size characterization of layered lead iodide quantum dots via optical spectroscopy and atomic force microscopy. J Phys Chem 100:19927–19932

    Article  Google Scholar 

  31. Derenzo SE, Bourret-Courchesne E, Yan Z, Bizarri G, Canning A, Zhang G (2013) Chemical and size characterization of layered lead iodide quantum dots via optical spectroscopy and atomic force microscopy. J Lumin 134:28–34

    Article  Google Scholar 

  32. Łagowski J, Balestra CL, Gatos HC (1971) Photovoltage inversion effect and its application to semiconductor surface studies: CdS. Surf Sci 27:547–558

    Article  Google Scholar 

  33. Zhang XR, Lin YH, He DQ, Zhang JF, Fan ZY, Xie TF (2011) Interface junction at anatase/rutile in mixed-phase TiO2: formation and photo-generated charge carriers properties. Chem Phys Lett 504:71–75

    Article  Google Scholar 

  34. Zhao J, Nail BA, Holmes MA, Osterloh FE (2016) Use of surface photovoltage spectroscopy to measure built-in voltage, space charge layer width, and effective band gap in CdSe quantum dot films. J Phys Chem Lett 7:3335–3340

    Article  Google Scholar 

  35. Li S, Meng DD, Hou LB, Wang DJ, Xie TF (2016) The surface engineering of CdS nanocrystal for photocatalytic reaction: a strategy of modulating the trapping states and radicals generation towards RhB degradation. Appl Surf Sci 371:164–171

    Article  Google Scholar 

  36. Li S, Hou LB, Zhang LJ, Chen LP, Lin YH, Wang DJ, Xie TF (2015) Direct evidence of the efficient hole collection process of the CoO x cocatalyst for photocatalytic reactions: a surface photovoltage study. J Mater Chem A 3:17820–17826

    Article  Google Scholar 

  37. Kronik L, Shapira Y (1999) Surface photovoltage phenomena: theory, experiment, and applications. Surf Sci Rep 37:1–206

    Article  Google Scholar 

  38. Jiang TF, Xie TF, Zhang Y, Chen LP, Peng LL, Li YH, Wang DJ (2010) Photoinduced charge transfer in ZnO/Cu2O heterostructure films studied by surface photovoltage technique. Phys Chem Chem Phys 12:15476–15481

    Article  Google Scholar 

  39. Lagowski J, Balestra CL, Gatos HC (1972) Determination of surface state parameters from surface photovoltage transients: CdS. Surf Sci 29:203–212

    Article  Google Scholar 

  40. Baibarac M, Preda N, Mihut L, Baltog I, Lefrant S, Mevellec JY (2004) On the optical properties of micro-and nanometric size PbI2 particles. J Phys: Condens Matter 16:2345–2355

    Google Scholar 

  41. Yang F, Xi J, Gan LY, Wang Y, Lu S, Ma W, Zhao Y (2016) Improved charge transfer and photoelectrochemical performance of CuI/Sb2S3/TiO2 heterostructure nanotube arrays. J Colloid Interface Sci 464:1–9

    Article  Google Scholar 

  42. Cai FG, Yang F, Jia YF, Ke C, Cheng CH, Zhao Y (2013) Bi2S3-modified TiO2 nanotube arrays: easy fabrication of heterostructure and effective enhancement of photoelectrochemical property. J Mater Sci 48:6001–6007. doi:10.1007/s10853-013-7396-4

    Article  Google Scholar 

  43. Cai FG, Yang F, Zhang Y, Ke C, Cheng C, Zhao Y, Yan G (2014) PbS sensitized TiO2 nanotube arrays with different sizes and filling degrees for enhancing photoelectrochemical properties. Phys Chem Chem Phys 16:23967–23974

    Article  Google Scholar 

  44. Zhang LJ, Li S, Liu BK, Wang DJ, Xie TF (2014) Highly efficient CdS/WO3 photocatalysts: Z-scheme photocatalytic mechanism for their enhanced photocatalytic H2 evolution under visible light. ACS Catal 4:3724–3729

    Article  Google Scholar 

  45. Sheng CX, Zhai Y, Olejnik E, Zhang C, Sun D, Vardeny ZV (2015) Laser action and photoexcitations dynamics in PbI2 films. Opt Mater Express 5:530–537

    Article  Google Scholar 

  46. Łagowski J, Sproles ES, Gatos HC (1972) Photovoltage inversion effect resulting from a continuous spectrum of surface states: ZnO. Surf Sci 30:653–658

    Article  Google Scholar 

  47. Lifshitz E, Yassen M, Bykov L, Dag I (1996) Continuous photoluminescence, time resolved photoluminescence and optically detected magnetic resonance measurements of PbI2 nanometer-sized particles, embedded in SiO2 film. J Lumin 70:421–434

    Article  Google Scholar 

  48. Zhao J, Osterloh FE (2014) Photochemical charge separation in nanocrystal photocatalyst films: insights from surface photovoltage spectroscopy. J Phys Chem Lett 5:782–786

    Article  Google Scholar 

  49. Beyreuther E, Becherer J, Thiessen A, Grafström S, Eng LM (2013) Electronic surface properties of SrTiO3 derived from a surface photovoltage study. Surf Sci 612:1–9

    Article  Google Scholar 

  50. De Blasi C, Galassini S, Manfredotti C, Micocci G, Ruggiero L, Tepore A (1978) Trapping levels in PbI2. Solid State Commun 25:149–153

    Article  Google Scholar 

  51. Kronik L, Shapira Y (2001) Surface photovoltage spectroscopy of semiconductor structures: at the crossroads of physics, chemistry and electrical engineering. Surf Interface Anal 31:954–965

    Article  Google Scholar 

  52. Germanova KG, Konstantinov LL, Strashilov VL (1983) Sub-bandgap surface photovoltage in deep bulk impurity level semiconductors. Surf Sci 128:447–463

    Article  Google Scholar 

  53. Lin YH, Wang DJ, Zhao QD, Yang M, Zhang QL (2004) A study of quantum confinement properties of photogenerated charges in ZnO nanoparticles by surface photovoltage spectroscopy. J Phys Chem B 108:3202–3206

    Article  Google Scholar 

  54. Li ADQ, Li LS (2004) Photovoltage enhancement: analysis of polaron formation and charge transport at the junctions of organic polythiophene and inorganic semiconductors. J Phys Chem B 108:12842–12850

    Article  Google Scholar 

  55. Zhang J, Yu J, Jaroniec M, Gong JR (2012) Noble metal-free reduced graphene oxide-Zn x Cd1−x S nanocomposite with enhanced solar photocatalytic H2-production performance. Nano Lett 12:4584–4589

    Article  Google Scholar 

  56. Yu J, Dai G, Huang B (2009) Fabrication and characterization of visible-light-driven plasmonic photocatalyst Ag/AgCl/TiO2 nanotube arrays. J Phys Chem C 113:16394–16401

    Article  Google Scholar 

  57. Kuhlmann W, Henzler M (1980) Non-equilibrium surface state properties at clean cleaved silicon surface as measured by surface photovoltage. Surf Sci 99:45–58

    Article  Google Scholar 

  58. Lagowski J, Edelman P, Morawski A (1992) Non-contact deep level transient spectroscopy (DLTS) based on surface photovoltage. Semicond Sci Technol 7:A211–A214

    Article  Google Scholar 

  59. Yu JG, Dai GP, Cheng B (2010) Effect of crystallization methods on morphology and photocatalytic activity of anodized TiO2 nanotube array films. J Phys Chem C 114:19378–19385

    Article  Google Scholar 

  60. Cowan AJ, Barnett CJ, Pendlebury SR, Barroso M, Sivula K, Grätzel M, Klug DR (2011) Activation energies for the rate-limiting step in water photooxidation by nanostructured α-Fe2O3 and TiO2. J Am Chem Soc 133:10134–10140

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported financially by National Magnetic Confinement Fusion Science Program (2011GB112001, 2013GB110001); Program of International S&T Cooperation (2013DFA51050); National Natural Science Foundation of China (51271155, 51377138, 51305364); Fundamental Research Funds for the Central Universities (SWJTU2682016ZDPY10, 2682013CX004, SWJTU11ZT31, 2682013CX004); Science Foundation of Sichuan Province (2011JY0031, 2011JY0130, 2015JY0137); New Teachers’ Fund for Doctor Stations, Ministry of Education (20120184120024); the 863 Program (No. 2014AA032701).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Feng Yang or Yong Zhao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 2359 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, W., Yang, F., Wang, Y. et al. Surface photovoltage inversion and photocatalytic properties of PbI2 microcrystals under sub-bandgap illumination. J Mater Sci 52, 9696–9708 (2017). https://doi.org/10.1007/s10853-017-1123-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1123-5

Keywords

Navigation