Skip to main content

Advertisement

Log in

Fabrication and characterization of co-polyimide fibers containing pyrimidine units

  • Polymers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A series of co-polyimides (co-PIs) containing pyrimidine rings were synthesized by reacting the self-synthesized diamine 2,5-bis(4-aminophenyl)-pyrimidine (PRM) with commercial 4,4’-diaminodiphenyl ether (ODA) and aromatic 3,3′,4,4′-biphenyltetracarboxylic dianhydride (BPDA). A series of co-PI fibers were produced using a two-step wet-spinning method, including extrusion, coagulation, washing, drying, thermal imidization and hot-drawing processes. Orientation structures of the precursor co-PAA fibers formed in the wet-spinning process, and their effects on the thermomechanical properties of the as-spun co-PI fibers were discussed. An interesting phenomenon has been found that glass transition temperatures (T gs) of as-spun co-PI fibers decreased with increasing orientation factors, which was explained based on some previous works. Two-dimensional wide-angle X-ray diffraction spectra of the final co-PI fibers showed that samples with higher PRM contents show highly oriented and well-ordered crystalline structures, which account for the enhanced mechanical properties when incorporating PRM moieties. The co-PI fiber with the PRM/ODA molar ratio of 6/4 showed an optimum tensile strength and modulus of 3.1 and 90 GPa, respectively, showing a great potential in light advanced composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Afshari M, Sikkema DJ, Lee K, Bogle M (2008) High performance fibers based on rigid and flexible polymers. Polym Rev 48(2):230–274. doi:10.1080/15583720802020129

    Article  Google Scholar 

  2. Hu XD, Jenkins SE, Min BG, Polk MB, Kumar S (2003) Rigid-rod polymers: synthesis, processing, simulation, structure, and properties. Macromol Mater Eng 288(11):823–843. doi:10.1002/mame.200300013/full

    Article  Google Scholar 

  3. Liaw D-J, Wang KL, Huang YC, Lee KR, Lai JY, Ha CS (2012) Advanced polyimide materials: syntheses, physical properties and applications. Prog Polym Sci 37(7):907–974. doi:10.1016/j.progpolymsci.2012.02.005

    Article  Google Scholar 

  4. Chae HGKS (2008) Making strong fibers. Science 5865:908–909

    Article  Google Scholar 

  5. Leu CM, Chang YT, Wei KH (2003) Synthesis and dielectric properties of polyimide-tethered polyhedral oligomeric silsesquioxane (POSS) nanocomposites via POSS-diamine. Macromolecules 36(24):9122–9127. doi:10.1021/ma034743r

    Article  Google Scholar 

  6. Dong J, Fang Y, Gan F, An J, Zhao X, Zhang Q (2016) Enhanced mechanical properties of polyimide composite fibers containing amino functionalized carbon nanotubes. Compos Sci Technol 135:137–145. doi:10.1016/j.compscitech.2016.09.021

    Article  Google Scholar 

  7. Hu N, Wei L, Wang Y, Gao R, Chai J, Yang Z, Kong ESW, Zhang Y (2012) Graphene oxide reinforced polyimide nanocomposites via in situ polymerization. J Nanosci Nanotechnol 12(1):173–178. doi:10.1166/jnn.2012.5144

    Article  Google Scholar 

  8. Dong J, Yin C, Zhao X, Li Y, Zhang Q (2013) High strength polyimide fibers with functionalized graphene. Polymer 54(23):6415–6424. doi:10.1016/j.polymer.2013.09.035

    Article  Google Scholar 

  9. Niu H, Huang M, Qi S, Han E, Tian G, Wang X, Wu D (2013) High-performance copolyimide fibers containing quinazolinone moiety: preparation, structure and properties. Polymer 54(6):1700–1708. doi:10.1016/j.polymer.2013.01.047

    Article  Google Scholar 

  10. Chen X, Li Z, Liu F, Sun Q, Li J (2015) Synthesis and properties of poly(imide-benzoxazole) fibers from 4,4′-oxydiphthalic dianhydride in polyphosphoric acid. Eur Polym J 64:108–117. doi:10.1016/j.eurpolymj.2014.12.031

    Article  Google Scholar 

  11. Artem’eva VN, Kudryavtsev VV, Nekrasova EM, Sklizkova VP, Baklagina YG, Lukasheva NV, Shkurko OP, Borovik VP (1992) Investigation of the role of the pyrimidine ring in the main chain of polyamido acids and polyimides. 1. Supermolecular structure of polypyromellitimides based on 2,5-bis(p-aminophenyl) pyrimidine and its carbocyclic analog 4,4′-diaminoterphenyl. Bull Russ Acad Sci Div Chem Sci 41(10):1790–1796. doi:10.1007/bf00863810

    Article  Google Scholar 

  12. Artem’eva VN, Kudryavtsev VV, Nekrasova EM, Sklizkova VP, Lyubimova GV, Hofman IV, Borovik VP, Shkurko OP (1994) The role of the pyrimidine ring in the main chain of polyamic acids and polyimides. Russ Chem Bull 43(3):387–390. doi:10.1007/bf01169711

    Article  Google Scholar 

  13. Sukhanova TE, Baklagina YG, Kudryavtsev VV, Maricheva TA, Lednicky F (1999) Morphology, deformation and failure behaviour of homo- and copolyimide fibres: 1. Fibres from 4,4′-oxybis(phthalic anhydride) (DPhO) and p-phenylenediamine (PPh) or/and 2,5-bis(4-aminophenyl)-pyrimidine (2,5-PRM). Polymer 40(23):6265–6276. doi:10.1016/S0032-3861(99)00039-7

    Article  Google Scholar 

  14. Luo L, Wang Y, Zhang J, Huang J, Feng Y, Peng C, Wang X, Liu X (2016) The effect of asymmetric heterocyclic units on the microstructure and the improvement of mechanical properties of three rigid-rod co-PI fibers. Macromol Mater Eng 301(7):853–863. doi:10.1002/mame.201600113

    Article  Google Scholar 

  15. Xia A, Guo H, Qiu X, Ding M, Gao L (2006) Syntheses and properties of polyimides derived from diamines containing 2,5-disubstituted pyridine group. J Appl Polym Sci 102(2):1844–1851. doi:10.1002/app.24083

    Article  Google Scholar 

  16. Davies IW, Marcoux J-F, Wu J, Palucki M, Corley EG, Robbins MA, Tsou N, Ball RG, Dormer P, Larsen RD, Reider PJ (2000) An efficient preparation of vinamidinium hexafluorophosphate salts. J Organ Chem 65(15):4571–4574. doi:10.1021/jo000159u

    Article  Google Scholar 

  17. Davies IW, Tellers DM, Shultz CS, Fleitz FJ, Cai D, Sun Y (2002) A cycloaddition route to dimethylaminomethylene vinamidinium salts. Org Lett 4(17):2969–2972. doi:10.1021/ol026383i

    Article  Google Scholar 

  18. Kim YH, Harris FW, Cheng SZD (1996) Crystal structure and mechanical properties of ODPA-DMB polyimide fibers. Thermochim Acta 282:411–423. doi:10.1016/0040-6031(96)02805-5

    Article  Google Scholar 

  19. Eashoo M, Shen D, Wu Z, Lee CJ, Harris FW, Cheng SZD (1993) High-performance aromatic polyimide fibres: 2. Thermal mechanical and dynamic properties. Polymer 34(15):3209–3215. doi:10.1016/0032-3861(93)90392-N

    Article  Google Scholar 

  20. Ito E, Hatakeyama T (1974) Studies of the amorphous region of polymers. I. Relationship between the change of structure and glass-transition temperature in drawn poly(ethylene terephthalate). J Polym Sci Polym Phys Ed 12:1477–1483. doi:10.1002/pol.1974.180120719

    Article  Google Scholar 

  21. Luo L, Zheng Y, Huang J, Li K, Wang H, Feng Y, Wang X, Liu X (2015) High-performance copoly(benzimidazole-benzoxazole-imide) fibers: fabrication, structure, and properties. J Appl Polym Sci 132(22):42001. doi:10.1002/app.42001

    Article  Google Scholar 

  22. Bunsell AR (1975) The tensile and fatigue behaviour of Kevlar-49 (PRD-49) fibre. J Mater Sci 10(8):1300–1308. doi:10.1007/bf00540819

    Article  Google Scholar 

  23. Allen SR, Filippov AG, Farris RJ, Thomas EL (1981) Macrostructure and mechanical behavior of fibers of poly-p-phenylene benzobisthiazole. J Appl Polym Sci 26(1):291–301. doi:10.1002/app.1981.070260127

    Article  Google Scholar 

  24. Bennett JA, Young RJ (1998) The effect of fibre–matrix adhesion upon crack bridging in fibre reinforced composites. Compos A Appl Sci Manuf 29(9–10):1071–1081. doi:10.1016/S1359-835X(98)00045-1

    Article  Google Scholar 

  25. Black WB, Preston J (1973) High-modulus wholly aromatic fibers: papers, vol 5. M. Dekker, New York

    Google Scholar 

  26. Gabara V (2000) High-performance fibers. In: Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH Verlag GmbH & Co. KGaA. doi:10.1002/14356007.a13_001.pub2

  27. Downing JW, Newell JA (2004) Characterization of structural changes in thermally enhanced Kevlar-29 fiber. J Appl Polym Sci 91(1):417–424. doi:10.1002/app.13021

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (No. 51233001), 973 plan (2014CB643603), Shanghai Science and Technology Innovation Action Plan (16JC1403600), Textile Vision Basic Research Project (J201602) and Shanghai Science and Technology Commission “Yangfan” Program (17YF1400500).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jie Dong or Qinghua Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gan, F., Dong, J., Tan, W. et al. Fabrication and characterization of co-polyimide fibers containing pyrimidine units. J Mater Sci 52, 9895–9906 (2017). https://doi.org/10.1007/s10853-017-1099-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1099-1

Keywords

Navigation