Skip to main content
Log in

Ball milling as a way to produce magnetic and magnetocaloric materials: a review

  • Mechanochemical Synthesis
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Ball milling (BM) is a well-established technique for producing different materials in powder shape. Dynamical analysis of BM helps to optimize the process through simple but general relations (e.g., definition of an equivalent milling time). Concerning the field of study of magnetocaloric effect (MCE), BM is used in different ways: as a single step process (mechanical alloying), as an initial step to enhance mixing of the elements (e.g., to speed up the formation of the desired intermetallic phase) or as a final step (e.g., hydriding of La–Fe–Si). In this contribution, besides a simple description of the effects of some geometrical parameters on the power released during BM and a short review of the BM contribution to the research field of MCE, we will discuss the effect of the microstructure of the starting material and the granular shape inherent to BM on magnetic materials exhibiting MCE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Suryanarayana C (2001) Mechanical alloying and milling. Prog Mater Sci 46:1–184. doi:10.1016/s0079-6425(99)00010-9

    Article  Google Scholar 

  2. Suryanarayana C, Al-Aqeeli N (2013) Mechanically alloyed nanocomposites. Prog Mater Sci 58:383–502. doi:10.1016/j.pmatsci.2012.10.001

    Article  Google Scholar 

  3. Balaz P, Achimovicova M, Balaz M et al (2013) Hallmarks of mechanochemistry: from nanoparticles to technology. Chem Soc Rev 42:7571–7637. doi:10.1039/c3cs35468g

    Article  Google Scholar 

  4. Blázquez JS, Ipus JJ, Lozano-Pérez S, Conde A (2013) Metastable soft magnetic materials produced by mechanical alloying: analysis using an equivalent time approach. JOM 65:870–882. doi:10.1007/s11837-013-0616-1

    Article  Google Scholar 

  5. Ipus JJ, Blázquez JS, Franco V, Conde A, Lozano-Pérez S (2012) Analysis of the magnetic anisotropy in Fe–Co–Nb–B alloys partially amorphized by mechanical alloying. Phys Express 2:8 (1-7)

    Google Scholar 

  6. Ipus JJ, Blázquez JS, Franco V, Conde CF, Conde A (2011) Two milling time regimes in the evolution of magnetic anisotropy of mechanically alloyed soft magnetic powders. J Alloy Compd 509:1407–1410. doi:10.1016/j.jallcom.2010.10.207

    Article  Google Scholar 

  7. Hernando A, Vázquez M, Kulik T, Prados C (1995) Analysis of the dependence of spin-spin correlations on the thermal treatment of nanocrystalline materials. Phys Rev B 51:3581–3586. doi:10.1103/PhysRevB.51.3581

    Article  Google Scholar 

  8. Gschneidner KA, Pecharsky VK (2000) Magnetocaloric materials. Annu Rev Mater Sci 30:387–429. doi:10.1146/annurev.matsci.30.1.387

    Article  Google Scholar 

  9. Franco V, Blázquez JS, Ingale B, Conde A (2012) The magnetocaloric effect and magnetic refrigeration near room temperature: materials and models. Annu Rev Mater Res 42:305–342. doi:10.1146/annurev-matsci-062910-100356

    Article  Google Scholar 

  10. Tishin AM, Spichkin YI, Zverev VI, Egolf PW (2016) A review and new perspectives for the magnetocaloric effect: new materials and local heating and cooling inside the human body. International Journal of Refrigeration-Revue Internationale Du Froid 68:177–186. doi:10.1016/j.ijrefrig.2016.04.020

    Article  Google Scholar 

  11. Ghahremani M, Aslani A, Siddique A, Bennett LH, Della Torre E (2016) Tuning the heat transfer medium and operating conditions in magnetic refrigeration. AIP Adv 6:075221. doi:10.1063/1.4960379

    Article  Google Scholar 

  12. Rodionov ID, Koshkid’ko YS, Cwik J et al (2015) Magnetocaloric effect in Ni50Mn35In15 Heusler alloy in low and high magnetic fields. JETP Lett 101:385–389. doi:10.1134/s0021364015060107

    Article  Google Scholar 

  13. Tocado L, Palacios E, Burriel R (2009) Entropy determinations and magnetocaloric parameters in systems with first-order transitions: study of MnAs. J Appl Phys 105:093918. doi:10.1063/1.3093880

    Article  Google Scholar 

  14. Carvalho AMG, Coelho AA, von Ranke PJ, Alves CS (2011) The isothermal variation of the entropy (ΔST) may be miscalculated from magnetization isotherms in some cases: MnAs and Gd5Ge2Si2 compounds as examples. J Alloy Compd 509:3452–3456. doi:10.1016/j.jallcom.2010.12.088

    Article  Google Scholar 

  15. Franco V (2014) Lake shore cryotronics: application note. http://www.lakeshore.com/products/Vibrating-Sample-Magnetometer/Pages/MCE.aspx

  16. Kaeswurm B, Franco V, Skokov KP, Gutfleisch O (2016) Assessment of the magnetocaloric effect in La, Pr(Fe, Si) under cycling. J Magn Magn Mater 406:259–265. doi:10.1016/j.jmmm.2016.01.045

    Article  Google Scholar 

  17. Blázquez JS, Ipus JJ, Moreno-Ramírez LM, Borrego JM, Lozano-Pérez S, Franco V, Conde CF, Conde A (2015) Analysis of the magnetocaloric effect in powder samples obtained by ball milling. Metall Mater Trans E 2:131–138. doi:10.1007/s40553-015-0050-0

    Google Scholar 

  18. Abdellaoui M, Gaffet E (1995) The physics of mechanical alloying in a planetary ball mill: mathematical treatment. Acta Metall Mater 43:1087–1098. doi:10.1016/0956-7151(95)92625-7

    Article  Google Scholar 

  19. Ipus JJ, Blázquez JS, Franco V, Millán M, Conde A, Oleszak D, Kulik T (2008) An equivalent time approach for scaling the mechanical alloying processes. Intermetallics 16:470–478. doi:10.1016/j.intermet.2007.12.011

    Article  Google Scholar 

  20. Lebrun P, Froyen L, Delaey L (1993) The modelling of the mechanical alloying process in a planetary ball mill: comparison between theory and in situ observations. Mater Sci Eng A-Struct Mater Prop Microstruct Process 161:75–82. doi:10.1016/0921-5093(93)90477-v

    Article  Google Scholar 

  21. Delogu F, Cocco G (2005) Kinetics of structural evolution in immiscible Ag–Cu and Co–Cu systems under mechanical processing conditions. Mater Sci Eng A-Struct Mater Prop Microstruct Process 402:208–214. doi:10.1016/j.msea.2005.04.007

    Article  Google Scholar 

  22. Chevalier B, Bobet JL, Marcos JS, Fernandez JR, Sal JCG (2005) Magnetocaloric properties of amorphous GdNiAl obtained by mechanical grinding. Appl Phys Mater Sci Process 80:601–606. doi:10.1007/s00339-003-2239-9

    Article  Google Scholar 

  23. Zhang TB, Provenzano V, Chen YG, Shull RD (2008) Magnetic properties of a high energy ball-milled amorphous Gd5Si1.8Ge1.8Sn0.4 alloy. Solid State Commun 147:107–110. doi:10.1016/j.ssc.2008.05.009

    Article  Google Scholar 

  24. Shishkin DA, Baranov NV, Gubkin AF, Volegov AS, Gerasimov EG, Terentev PB, Stashkova LA (2014) Impact of amorphization on the magnetic state and magnetocaloric properties of Gd3Ni. Appl Phys Mater Sci Process 116:1403–1407. doi:10.1007/s00339-014-8245-2

    Article  Google Scholar 

  25. Ipus JJ, Blázquez JS, Franco V, Conde A (2008) Mechanical alloying of Fe100 − x−yNbxBy (x = 5, 10; y = 10, 15): from pure powder mixture to amorphous phase. Intermetallics 16:1073–1082. doi:10.1016/j.intermet.2008.06.006

    Article  Google Scholar 

  26. Ipus JJ, Blázquez JS, Franco V, Conde A, Kiss LF (2009) Magnetocaloric response of Fe75Nb10B15Fe75Nb10B15 powders partially amorphized by ball milling. J Appl Phys 105:123922. doi:10.1063/1.3155982

    Article  Google Scholar 

  27. Ipus JJ, Blázquez JS, Franco V, Conde A (2010) Influence of Co addition on the magnetic properties and magnetocaloric effect of Nanoperm (Fe1 − XCoX)75Nb10B15 type alloys prepared by mechanical alloying. J Alloy Compd 496:7–12. doi:10.1016/j.jallcom.2009.12.029

    Article  Google Scholar 

  28. Moreno LM, Blázquez JS, Ipus JJ, Borrego JM, Franco V, Conde A (2014) Magnetocaloric effect of Co62Nb6Zr2B30 amorphous alloys obtained by mechanical alloying or rapid quenching. J Appl Phys 115:17A302. doi:10.1063/1.4857595

    Article  Google Scholar 

  29. Ipus JJ, Ucar H, McHenry ME (2011) Near room temperature magnetocaloric response of an (FeNi)ZrB alloy. IEEE Trans Magn 47:2494–2497. doi:10.1109/tmag.2011.2159781

    Article  Google Scholar 

  30. Ucar H, Craven M, Laughlin DE, McHenry ME (2014) Effect of Mo addition on structure and magnetocaloric effect in γ-FeNi nanocrystals. J Electron Mater 43:137–141. doi:10.1007/s11664-013-2725-6

    Article  Google Scholar 

  31. Chaudhary V, Repaka DVM, Chaturvedi A, Sridhar I, Ramanujan RV (2014) Magnetocaloric properties and critical behavior of high relative cooling power FeNiB nanoparticles. J Appl Phys 116:163918. doi:10.1063/1.4900736

    Article  Google Scholar 

  32. Chaudhary V, Ramanujan RV (2015) Magnetic and structural properties of high relative cooling power (Fe70Ni30)92Mn8 magnetocaloric nanoparticles. J Phys D-Appl Phys 48:305003. doi:10.1088/0022-3727/48/30/305003

    Article  Google Scholar 

  33. Varzaneh AG, Kameli P, Karimzadeh F, Aslibeiki B, Varvaro G, Salamati H (2014) J Alloy Compd 598:6–10. doi:10.1016/j.jallcom.2014.01.249

    Article  Google Scholar 

  34. Gomes AM, das Virgens MG, Continentino MA, Checon JCC, Lopez A, Azevedo IS (2008) Behavior of the inverse magnetocaloric effect in RuSr2Eu1.5Ce0.5Cu2O10 − δ. J Magn Magn Mater 320:E513–E515. doi:10.1016/j.jmmm.2008.02.108

    Article  Google Scholar 

  35. Anwar MS, Ahmed F, Koo BH (2014) Structural distortion effect on the magnetization and magnetocaloric effect in Pr modified La0.65Sr0.35MnO3 manganite. J Alloy Compd 617:893–898. doi:10.1016/j.jallcom.2014.08.105

    Article  Google Scholar 

  36. Zouari S, Ellouze M, Nasri A, Cherif W, Hlil EK, Elhalouani F (2014) Morphology, structural, magnetic, and magnetocaloric properties of Pr0.7Ca0.3MnO3 nanopowder prepared by mechanical ball milling method. J Supercond Novel Magn 27:555–563. doi:10.1007/s10948-013-2306-1

    Article  Google Scholar 

  37. Rayaprol S, Kaushik SD (2015) Magnetic and magnetocaloric properties of FeMnO3. Ceram Int 41:9567–9571. doi:10.1016/j.ceramint.2015.04.017

    Article  Google Scholar 

  38. Messaoui I, Riahi K, Cheikhrouhou-Koubaa W, Koubaa M, Cheikhrouhou A, Hlil EK (2016) Phenomenological model of the magnetocaloric effect on Nd0.7Ca0.15Sr0.15MnO3 compound prepared by ball milling method. Ceram Int 42:6825–6832. doi:10.1016/j.ceramint.2016.01.060

    Article  Google Scholar 

  39. Schouwink P, Didelot E, Lee Y-S, Mazet T, Cerny R (2016) Structural and magnetocaloric properties of novel gadolinium borohydrides. J Alloy Compd 664:378–384. doi:10.1016/j.jallcom.2015.12.182

    Article  Google Scholar 

  40. Ipus JJ, Borrego JM, Blázquez JS, Stoica M, Franco V, Conde A (2015) Influence of hot compaction on microstructure and magnetic properties of mechanically alloyed Fe(Co)-based amorphous compositions. J Alloy Compd 653:546–551. doi:10.1016/j.jallcom.2015.09.074

    Article  Google Scholar 

  41. Zhong W, Liu W, Wu XL, Tang NJ, Chen W, Au CT, Du YW (2004) Magnetocaloric effect in the ordered double perovskite Sr2FeMo1 − xWxO6. Solid State Commun 132:157–162. doi:10.1016/j.ssc.2004.07.060

    Article  Google Scholar 

  42. Zhang P, Yang H, Zhang S, Ge H, Hua S (2013) Magnetic and magnetocaloric properties of perovskite La0.7Sr0.3Mn1 − xCoxO3. Phys B-Condens Matter 410:1–4. doi:10.1016/j.physb.2012.10.022

    Article  Google Scholar 

  43. Zhong W, Wu XL, Tang NJ, Liu W, Chen W, Au CT, Du YW (2004) Magnetocaloric effect in ordered double-perovskite Ba22FeMoO66 synthesized using wet chemistry. Eur Phys J B 41:213–217. doi:10.1140/epjb/e2004-00312-9

    Article  Google Scholar 

  44. Gass J, Srikanth H, Kislov N, Srinivasan SS, Emirov Y (2008) Magnetization and magnetocaloric effect in ball-milled zinc ferrite powder. J Appl Phys 103:07B309. doi:10.1063/1.2829754

    Article  Google Scholar 

  45. Yan A, Muller KH, Schultz L, Gutfleisch O (2006) Magnetic entropy change in melt-spun MnFePGe (invited). J Appl Phys 99:08K903. doi:10.1063/1.2162807

    Article  Google Scholar 

  46. Czaja P, Przewoznik J, Fitta M et al (2016) J Magn Magn Mater 401:223–230. doi:10.1016/j.jmmm.2015.10.043

    Article  Google Scholar 

  47. Songlin Dagula, Tegus O, Bruck E, de Boer FR, Buschow KHJ (2002) Magnetic and magnetocaloric properties of Mn5Ge3 − xSbx. J Alloy Compd 337:269–271. doi:10.1016/S0925-8388(01)01935-1

    Article  Google Scholar 

  48. Brück E, Tegus O, Zhang L, Li XW, de Boer FR, Buschow KHJ (2004) Magnetic refrigeration near room temperature with Fe2P-based compounds. J Alloy Compd 383:32–36. doi:10.1016/j.jallcom.2004.04.042

    Article  Google Scholar 

  49. Brück E, Ilyn M, Tishin AM, Tegus O (2005) Magnetocaloric effects in MnFeP1 − xAsx-based compounds. J Magn Magn Mater 290:8–13. doi:10.1016/j.jmmm.2004.11.152

    Article  Google Scholar 

  50. Dagula W, Tegus O, Fuquan B et al (2005) Magnetic-entropy change in Mn/sub 1.1/Fe/sub 0.9/P/sub 1-x/Ge/sub x/compounds. IEEE Trans Magn 41:2778–2780. doi:10.1109/tmag.2005.854774

    Article  Google Scholar 

  51. Tegus O, Fuquan B, Dagula W, Zhang L, Brück E, Si PZ, de Boer FR, Buschow KHJ (2005) Magnetic-entropy change in Mn1.1Fe0.9P0.7As0.3–xGex. J Alloy Compd 396:6–9. doi:10.1016/j.jallcom.2004.12.001

    Article  Google Scholar 

  52. Dagula W, Tegus O, Li XW, Song L (2006) Magnetic properties and magnetic-entropy change of MnFeP0.5As0.5 − xSix(x = 0–0.3) compounds. J Appl Phys 99:08Q105. doi:10.1063/1.2158969

    Article  Google Scholar 

  53. Lozano JA, Kostow MP, Brück E, de Lima JC, Prata AT, Wendhausen PAP (2008) Porous manganese-based magnetocaloric material for magnetic refrigeration at room temperature. J Magn Magn Mater 320:E189–E192. doi:10.1016/j.jmmm.2008.02.044

    Article  Google Scholar 

  54. Yue M, Li ZQ, Xu H, Huang QZ, Liu XB (2010) Effect of annealing on the structure and magnetic properties of Mn1.1Fe0.9P0.8Ge0.2Mn1.1Fe0.9P0.8Ge0.2 compound. J Appl Phys 107:09A939. doi:10.1063/1.3358620

    Article  Google Scholar 

  55. Liu DM, Yue M, Zhang JX et al (2009) Origin and tuning of the magnetocaloric effect in the magnetic refrigerant Mn1.1Fe0.9(P0.8Ge0.2). Phys Rev B 79:014435. doi:10.1103/PhysRevB.79.014435

    Article  Google Scholar 

  56. Zhang L, Brück E, Tegus O, Buschow KHJ, de Boer FR (2003) The crystallographic phases and magnetic properties of Fe2MnSi1 − xGex. Phys B-Condens Matter 328:295–301. doi:10.1016/s0921-4526(02)01853-7

    Article  Google Scholar 

  57. Brück E, Tegus O, Thanh DTC, Trung NT, Buschow KHJ (2008) A review on Mn based materials for magnetic refrigeration: structure and properties. International Journal of Refrigeration-Revue Internationale Du Froid 31:763–770. doi:10.1016/j.ijrefrig.2007.11.013

    Article  Google Scholar 

  58. Yibole H, Guillou F, Caron L et al (2015) Moment evolution across the ferromagnetic phase transition of giant magnetocaloric (Mn, Fe)2(P, Si, B) compounds. Phys Rev B 91:014429. doi:10.1103/PhysRevB.91.014429

    Article  Google Scholar 

  59. Sun NK, Cui WB, Li D, Geng DY, Yang F, Zhang ZD (2008) Giant room-temperature magnetocaloric effect in Mn1 − xCrxAs. Appl Phys Lett 92:072504. doi:10.1063/1.2884524

    Article  Google Scholar 

  60. Cui WB, Liu W, Zhang Q, Li B, Liu XH, Yang F, Zhao XG, Zhang ZD (2010) Carbon-doping effects on the metamagnetic transition and magnetocaloric effect in MnAsCx. J Magn Magn Mater 322:2223–2226. doi:10.1016/j.jmmm.2010.02.014

    Article  Google Scholar 

  61. Cui WB, Lv XK, Yang F, Yu Y, Skomski R (2010) Interstitial-nitrogen effect on phase transition and magnetocaloric effect in Mn(As, Si) (invited). J Appl Phys 107:09A938. doi:10.1063/1.3358617

    Article  Google Scholar 

  62. Sun NK, Li D, Xu SN, Wang ZH, Zhang ZD (2011) Room-temperature magnetocaloric effect in (Co0.35Mn0.65)2P compound. J Mater Sci Technol 27:382–384. doi:10.1016/S1005-0302(11)60078-9

    Article  Google Scholar 

  63. Ma L, Guillou F, Yibole H et al (2015) Structural, magnetic and magnetocaloric properties of (Mn, Co)2(Si, P) compounds. J Alloy Compd 625:95–100. doi:10.1016/j.jallcom.2014.11.072

    Article  Google Scholar 

  64. de Boer FR, Boom R, Mattens WCM, Miedema AR, Niessen AK (1988) Cohesion in metals. Elsevier Science Pub. B.V., Amsterdam

    Google Scholar 

  65. Passamani EC, Takeuchi AY, Alves AL, Demuner AS, Favre-Nicolin E (2007) Magnetocaloric properties of (La, RE)Fe11.4Si1.6(La, RE)Fe11.4Si1.6 compounds (RE = Y, Gd). J Appl Phys 102:093906. doi:10.1063/1.2803658

    Article  Google Scholar 

  66. Cui WB, Liu W, Liu XH, Guo S, Han Z, Zhao XG, Zhang ZD (2009) Beneficial effect of minor Al substitution on the magnetocaloric effect of Mn1 − xAlxAs. Mater Lett 63:595–597. doi:10.1016/j.matlet.2008.11.056

    Article  Google Scholar 

  67. Phejar M, Paul-Boncour V, Bessais L (2010) Structural and magnetic properties of magnetocaloric LaFe13–xSix compounds synthesized by high energy ball-milling. Intermetallics 18:2301–2307. doi:10.1016/j.intermet.2010.07.022

    Article  Google Scholar 

  68. Phejar M, Paul-Boncour V, Bessais L (2016) Investigation on structural and magnetocaloric properties of LaFe13 − xSix(H, C)y compounds. J Solid State Chem 233:95–102. doi:10.1016/j.jssc.2015.10.016

    Article  Google Scholar 

  69. Guetari R, Bez R, Cizmas CB, Mliki N, Bessais L (2013) Magnetic properties and magneto-caloric effect in pseudo-binary intermetallic (Pr, Dy)2Fe17. J Alloy Compd 579:156–159. doi:10.1016/j.jallcom.2013.04.167

    Article  Google Scholar 

  70. Bulatova R, Bahl C, Andersen K, Kuhn LT, Pryds N (2015) Functionally graded ceramics fabricated with side-by-side tape casting for use in magnetic refrigeration. Int J Appl Ceram Technol 12:891–898. doi:10.1111/ijac.12298

    Article  Google Scholar 

  71. Lanzarini J, Barriere T, Sahli M et al (2015) Thermoplastic filled with magnetocaloric powder. Mater Des 87:1022–1029. doi:10.1016/j.matdes.2015.08.057

    Article  Google Scholar 

  72. Liu DM, Zhang H, Wang SB et al (2015) J Alloy Compd 633:120–126. doi:10.1016/j.jallcom.2015.01.141

    Article  Google Scholar 

  73. Kaeswurm B, Friemert K, Guersoy M, Skokov KP, Gutfleisch O (2016) Direct measurement of the magnetocaloric effect in cementite. J Magn Magn Mater 410:105–108. doi:10.1016/j.jmmm.2016.02.080

    Article  Google Scholar 

  74. Patissier A, Paul-Boncour V (2015) J Alloy Compd 645:143–150. doi:10.1016/j.jallcom.2015.04.199

    Article  Google Scholar 

  75. Bartok A, Kustov M, Cohen LF, Pasko A, Zehani K, Bessais L, Mazaleyrat F, LoBue M (2016) Study of the first paramagnetic to ferromagnetic transition in as prepared samples of Mn–Fe–P–Si magnetocaloric compounds prepared by different synthesis routes. J Magn Magn Mater 400:333–338. doi:10.1016/j.jmmm.2015.08.045

    Article  Google Scholar 

  76. Kupseh A, Levin AA, Meyer DC (2005) Structural phase transition in Tb5(Si0.6Ge0.4)4 at low temperature. Cryst Res Technol 40:42–51. doi:10.1002/crat.200410306

    Article  Google Scholar 

  77. Gao Q, Yu BF, Wang CF, Zhang B, Yang DX, Zhang Y (2006) Experimental investigation on refrigeration performance of a reciprocating active magnetic regenerator of room temperature magnetic refrigeration. International Journal of Refrigeration-Revue Internationale Du Froid 29:1274–1285. doi:10.1016/j.ijrefrig.2005.12.015

    Article  Google Scholar 

  78. Rajkumar DM, Raja MM, Gopalan R, Chandrasekaran V (2008) J Magn Magn Mater 320:1479–1484. doi:10.1016/j.jmmm.2007.12.005

    Article  Google Scholar 

  79. Chrobak A, Bajorek A, Chelkowska G, Haneczok G, Kwiecien M (2009) Magnetic properties and magnetocaloric effect of Gd(Ni1–xFex)3 crystalline compound and powder. Phys Status Solidi A-Appl Mater Sci 206:731–737. doi:10.1002/pssa.200824470

    Article  Google Scholar 

  80. Pires AL, Belo JH, Turcaud J et al (2015) Influence of short time milling in R5(Si, Ge)4, R = Gd and Tb, magnetocaloric materials. Mater Des 85:32–38. doi:10.1016/j.matdes.2015.06.099

    Article  Google Scholar 

  81. Ipus JJ, Blázquez JS, Franco V, Stoica M, Conde A (2014) Milling effects on magnetic properties of melt spun Fe–Nb–B alloy. J Appl Phys 115:17B518. doi:10.1063/1.4866700

    Article  Google Scholar 

  82. Shao Y, Zhang J, Lai JKL, Shek CH (1996) Magnetic entropy in nanocomposite binary gadolinium alloys. J Appl Phys 80:76–80. doi:10.1063/1.362773

    Article  Google Scholar 

  83. Llamazares JLS, Pérez MJ, Álvarez P et al (2009) The effect of ball milling in the microstructure and magnetic properties of Pr2Fe17 compound. J Alloy Compd 483:682–685. doi:10.1016/j.jallcom.2008.07.210

    Article  Google Scholar 

  84. Álvarez P, Gorría P, Franco V, Sánchez-Marcos J, Pérez MJ, Sánchez-Llamazares JL, Puente-Orench I, Blanco JA (2010) Nanocrystalline Nd2Fe17 synthesized by high-energy ball milling: crystal structure, microstructure and magnetic properties. J Phys-Condens Matter 22:216005. doi:10.1088/0953-8984/22/21/216005

    Article  Google Scholar 

  85. Zhang XY, Chen YJ, Lu LY, Li ZY (2006) A potential oxide for magnetic refrigeration application: CrO2 particles. J Phys-Condens Matter 18:L559. doi:10.1088/0953-8984/18/44/l01

    Article  Google Scholar 

  86. Das SD, Mohapatra N, Iyer KK, Bapat RD, Sampathkumaran EV (2009) Magnetic behavior of nanocrystalline ErCo2. J Phys-Condens Matter 21:296004. doi:10.1088/0953-8984/21/29/296004

    Article  Google Scholar 

  87. Phan MH, Morales MB, Chinnasamy CN, Latha B, Harris VG, Srikanth H (2009) Magnetocaloric effect in bulk and nanostructured Gd3Fe5O12 materials. J Phys D-Appl Phys 42:115007. doi:10.1088/0022-3727/42/11/115007

    Article  Google Scholar 

  88. Alves AL, Passamani EC, Nascimento VP, Takeuchi AY, Larica C (2010) Influence of grain refinement and induced crystal defects on the magnetic properties of Ni50Mn36Sn14 Heusler alloy. J Phys D-Appl Phys 43:345001. doi:10.1088/0022-3727/43/34/345001

    Article  Google Scholar 

  89. Das R, Perumal A, Srinivasan A (2013) Effect of particle size on the magneto-caloric properties of Ni51Mn34In14Si1 alloy. J Alloy Compd 572:192–198. doi:10.1016/j.jallcom.2013.03.235

    Article  Google Scholar 

  90. do Couto GG, Svitlyk V, Jafelicci M, Mozharivskyj Y (2011) Bulk and high-energy ball-milled Gd5Si2Ge2: comparative study of magnetic and magnetocaloric properties. Solid State Sci 13:209–215. doi:10.1016/j.solidstatesciences.2010.11.016

    Article  Google Scholar 

  91. Couillaud S, Chevalier B, Paul-Boncour V, Bobet JL (2012) On the magnetic properties of pseudo-Laves phases RE1 − yYyNi4 − xAlxMg with RE = La, Ce and Gd prepared by both melting and ball milling. J Alloys Compd 525:166–171. doi:10.1016/j.jallcom.2012.02.054

    Article  Google Scholar 

  92. Maji B, Suresh KG, Chen X, Ramanujan RV (2012) Magnetic and magnetocaloric properties of ball milled Nd5Ge3. J Appl Phys 111:073905. doi:10.1063/1.3700243

    Article  Google Scholar 

  93. Phan TL, Thanh TD, Zhang P, Yang DS, Yu SC (2013) The magnetic phase transition and magnetocaloric effect in Sm0.58Sr0.42MnO3 nanoparticles. Solid State Commun 166:32–37. doi:10.1016/j.ssc.2013.05.003

    Article  Google Scholar 

  94. Than TD, Linh DC, Van HT, Ho TA, Manh TV, Bau LV, Phan TL, Yu SC (2015) Magnetocaloric effect in La0.7Ca0.25Ba0.05MnO3 nanocrystals exhibiting the crossover of first- and second-order magnetic phase transformation. Mater Trans 56:1316–1319. doi:10.2320/matertrans.MA201546

    Article  Google Scholar 

  95. Biswas A, Chandra S, Stefanoski S et al (2015) Enhanced cryogenic magnetocaloric effect in Eu8Ga16Ge30 clathrate nanocrystals. J Appl Phys 117:033903. doi:10.1063/1.4906280

    Article  Google Scholar 

  96. Kaya M, Rezaeivala M, Yuzuak E, Akturk S, Dincer I, Elerman Y (2015) Effects of size reduction on the magnetic and magnetocaloric properties of NdMn2Ge2 nanoparticles prepared by high-energy ball milling. Phys Status Solidi B-Basic Solid State Phys 252:192–197. doi:10.1002/pssb.201451127

    Article  Google Scholar 

  97. de Santanna YVB, de Melo MAC, Santos IA, Coelho AA, Gama S, Cotica LF (2008) Structural, microstructural and magnetocaloric investigations in high-energy ball milled Ni2.18Mn0.82 Ga powders. Solid State Commun 148:289–292. doi:10.1016/j.ssc.2008.09.015

    Article  Google Scholar 

  98. Paticopoulos SC, Caballero-Flores R, Franco V, Blázquez JS, Conde A, Knippling KE, Willard MA (2012) Enhancement of the magnetocaloric effect in composites: experimental validation. Solid State Commun 152:1590–1594. doi:10.1016/j.ssc.2012.05.015

    Article  Google Scholar 

  99. Jones NJ, Ucar H, Ipus JJ, McHenry ME, Laughlin DE (2012) The effect of distributed exchange parameters on magnetocaloric refrigeration capacity in amorphous and nanocomposite materials. J Appl Phys 111:07A334. doi:10.1063/1.3679456

    Article  Google Scholar 

  100. Nersessian N, Or SW, Carman GP (2004) Gd5Si2Ge2 composite for magnetostrictive actuator applications. Appl Phys Lett 84:4801–4803. doi:10.1063/1.1760891

    Article  Google Scholar 

  101. Fujieda S, Fujita A, Fukamichi K (2003) Large magnetocaloric effects in NaZn13-type La(FexSi1 − x)13 compounds and their hydrides composed of icosahedral clusters. Sci Technol Adv Mater 4:339–346. doi:10.1016/j.stam.2003.07.002

    Article  Google Scholar 

  102. Mandal K, Gutfleisch O, Yan A, Handstein A, Muller KH (2005) Effect of reactive milling in hydrogen on the magnetic and magnetocaloric properties of LaFe11.57Si1.43. J Magn Magn Mater 290:673–675. doi:10.1016/j.jmmm.2004.11.333

    Article  Google Scholar 

  103. Mandal K, Pal D, Gutfleisch O, Kerschl P, Muller KH (2007) Magnetocaloric effect in reactively-milled LaFe11.57Si1.43HyLaFe11.57Si1.43Hy intermetallic compounds. J Appl Phys 102:053906. doi:10.1063/1.2775877

    Article  Google Scholar 

  104. Lyubina J, Gutfleisch O, Kuz’min MD, Richter M (2008) La(Fe, Si)13-based magnetic refrigerants obtained by novel processing routes. J Magn Magn Mater 320:2252–2258. doi:10.1016/j.jmmm.2008.04.116

    Article  Google Scholar 

  105. Sun NK, Xu SN, Li D, Zhang ZD (2011) Magnetocaloric effect and size-effect related thermal hysteresis reduction in MnAs1-xPx compounds. Phys Status Solidi A-Appl and Mater Sci 208:1950–1952. doi:10.1002/pssa.201026735

    Article  Google Scholar 

  106. Yoshizawa Y, Oguma S, Yamauchi K (1988) New Fe-based soft magnetic alloys composed of ultrafine grain structure. J Appl Phys 64:6044–6046. doi:10.1063/1.342149

    Article  Google Scholar 

  107. Kirchner A, Grunberger W, Gutfleisch O, Neu V, Muller KH, Schultz L (1998) A comparison of the magnetic properties and deformation behaviour of Nd-Fe-B magnets made from melt-spun, mechanically alloyed and HDDR powders. J Phys D-Appl Phys 31:1660–1666. doi:10.1088/0022-3727/31/14/008

    Article  Google Scholar 

  108. Moreno LM, Blázquez JS, Ipus JJ, Conde A (2014) Amorphization and evolution of magnetic properties during mechanical alloying of Co62Nb6Zr2B30: dependence on starting boron microstructure. J Alloy Compd 585:485–490. doi:10.1016/j.jallcom.2013.09.191

    Article  Google Scholar 

  109. Ipus JJ, Blázquez JS, Lozano-Pérez S, Conde A (2009) Microstructural evolution characterization of Fe–Nb–B ternary systems processed by ball milling. Philos Mag 89:1415–1423. doi:10.1080/14786430902984566

    Article  Google Scholar 

  110. Doyle PA, Turner PS (1968) Relativistic Hartree-Fock X-ray and electron scattering factors. Acta Crystallogr A 24:390–397. doi:10.1107/S0567739468000756

    Article  Google Scholar 

  111. Ipus JJ, Blázquez JS, Conde CF, Borrego JM, Franco V, Lozano-Pérez S, Conde A (2014) Relationship between mechanical amorphization and boron integration during processing of FeNbB alloys. Intermetallics 49:98–105. doi:10.1016/j.intermet.2014.01.018

    Article  Google Scholar 

  112. Wijn HPJ (1991) Landolt-Börnstein: Magnetische Eigenschaften von Metallen. Springer, Berlin

    Google Scholar 

  113. Lozano-Pérez S (2008) A guide on FIB preparation of samples containing stress corrosion crack tips for TEM and atom-probe analysis. Micron 39:320–328. doi:10.1016/j.micron.2007.12.003

    Article  Google Scholar 

  114. Liu XB, Liu XD, Altounian Z, Tu GH (2005) Phase formation and structure in rapidly quenched La(Fe0.88Co0.12)13 − xSix alloys. J Alloy Compd 397:120–125. doi:10.1016/j.jallcom.2005.01.022

    Article  Google Scholar 

  115. Tarasov LP (1939) Ferromagnetic anisotropy of iron and iron-rich silicon alloys. Phys Rev 56:1231–1240. doi:10.1103/PhysRev.56.1231

    Article  Google Scholar 

  116. Hill HH, Ellinger FH (1971) The effective size of americium dissolved in lanthanum. J Less-Common Met 23:92–94. doi:10.1016/0022-5088(71)90013-0

    Article  Google Scholar 

  117. Thaljaoui R, Boujelben W, Pękała K, Pękała M, Cheikhrouhou-Koubaa W, Cheikhrouhou A (2013) Magnetocaloric study of monovalent-doped manganites Pr0.6Sr0.4 − xNaxMnO3 (x = 0–0.2). J Mater Sci 48:3894–3903. doi:10.1007/s10853-013-7191-2

    Article  Google Scholar 

  118. Belkahla A, Cherif K, Dhahri J, Hlil EK (2016) Magnetic, magnetocaloric properties, and critical behavior in a layered perovskite La1.4(Sr0.95Ca0.05)1.6Mn2O7. J Mater Sci 51:7636–7651. doi:10.1007/s10853-016-0046-x

    Article  Google Scholar 

  119. Coey JMD (2010) Magnetism and magnetic materials. Cambridge University Press, New York

    Book  Google Scholar 

  120. Romero-Muñiz C, Ipus JJ, Blázquez JS, Franco V, Conde A (2014) Influence of the demagnetizing factor on the magnetocaloric effect: critical scaling and numerical simulations. Appl Phys Lett 104:252405. doi:10.1063/1.4885110

    Article  Google Scholar 

  121. Moreno-Ramírez LM, Ipus JJ, Franco V, Blázquez JS, Conde A (2015) Analysis of magnetocaloric effect of ball milled amorphous alloys: demagnetizing factor and Curie temperature distribution. J Alloy Compd 622:606–609. doi:10.1016/j.jallcom.2014.10.134

    Article  Google Scholar 

  122. Ipus JJ, Moreno-Ramirez LM, Blázquez JS, Franco V, Conde A (2014) A procedure to extract the magnetocaloric parameters of the single phases from experimental data of a multiphase system. Appl Phys Lett 105:172405. doi:10.1063/1.4900790

    Article  Google Scholar 

  123. Franco V, Blázquez JS, Conde A (2006) Field dependence of the magnetocaloric effect in materials with a second order phase transition: a master curve for the magnetic entropy change. Appl Phys Lett 89:222512. doi:10.1063/1.2399361

    Article  Google Scholar 

  124. Blázquez JS, Moreno-Ramírez LM, Ipus JJ, Kiss LF, Kaptás D, Kemény T, Franco V, Conde A (2015) Effect of α-Fe impurities on the field dependence of magnetocaloric response in LaFe11.5Si1.5. J Alloy Compd 646:101–105. doi:10.1016/j.jallcom.2015.06.085

    Article  Google Scholar 

Download references

Acknowledgements

Spanish MINECO and EU FEDER (Projects MAT 2013-45165-P), AEI/FEDER-UE (Project MAT-2016-77265-R) and the PAI of the Regional Government of Andalucía. L.M. Moreno-Ramírez acknowledges a FPU fellowship from the Spanish MECD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. S. Blázquez.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blázquez, J.S., Ipus, J.J., Moreno-Ramírez, L.M. et al. Ball milling as a way to produce magnetic and magnetocaloric materials: a review. J Mater Sci 52, 11834–11850 (2017). https://doi.org/10.1007/s10853-017-1089-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1089-3

Keywords

Navigation