Skip to main content

Advertisement

Log in

Hierarchically porous cobalt aluminum layered double hydroxide flowers with enhanced capacitance performances

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A facile and cost-efficient synthesis approach toward hierarchically porous cobalt aluminum layered double hydroxide with hydrangea flower-like morphology (PCALs) is developed in this work via the hydrothermal treatment of cobalt- and aluminum-containing precursors under basic conditions following etching with NaOH. The architectures and porosities of the obtained PCALs can be easily modified by the fabrication conditions such as the concentration of the starting materials and the time of etching, which can further influence their electrochemical behavior. As the electrode material in a three-electrode supercapacitor, the PCALs can deliver a high capacitance of 550 F g−1 for 1000 cycles with a retention rate over 82% at 10 A g−1. In addition, the asymmetric capacitor using PCALs as cathode and active carbon as anode also exhibits an excellent capacitance of 103.5 F g−1 at 0.5 A g−1, indicating their potentials in the applications of energy storages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Wang T, Luo Z, Li C et al (2014) Controllable fabrication of nanostructured materials for photoelectrochemical water splitting via atomic layer deposition. Chem Soc Rev 43(22):7469–7484

    Article  Google Scholar 

  2. Chen A, Chatterjee S (2010) Nanomaterials based electrochemical sensors for biomedical applications. Chem Soc Rev 42(12):5425–5438

    Article  Google Scholar 

  3. Maleki H (2016) Recent advances in aerogels for environmental remediation applications: a review. Chem Eng J 300:98–118

    Article  Google Scholar 

  4. Zhang Y, Cui B, Derr O et al (2014) Hierarchical cobalt-based hydroxide microspheres for water oxidation. Nanoscale 6(6):3376–3383

    Article  Google Scholar 

  5. Xiao Y, Liu S, Li F et al (2012) 3D Hierarchical Co3O4 twin-spheres with an urchin-like structure: large-scale synthesis, multistep-splitting growth, and electrochemical pseudocapacitors. Adv Funct Mater 22(19):4052–4059

    Article  Google Scholar 

  6. Lv H, Liang X, Ji G et al (2015) Porous three-dimensional flower-like Co/CoO and its excellent electromagnetic absorption properties. ACS Appl Mater Inter 7(18):9776–9783

    Article  Google Scholar 

  7. Parveen N, Cho MH (2016) Self-assembled 3D flower-like nickel hydroxide nanostructures and their supercapacitor applications. Sci Rep UK 6:27318

    Article  Google Scholar 

  8. Que YP, Weng J, Hu LH et al (2016) High open voltage and superior light-harvesting dye-sensitized solar cells fabricated by flower-like hierarchical TiO2 composed with highly crystalline nanosheets. J Power Sour 307:138–145

    Article  Google Scholar 

  9. Mao L, Wang Y, Zhong Y et al (2013) Microwave-assisted deposition of metal sulfide/oxide nanocrystals onto a 3D hierarchical flower-like TiO2 nanostructure with improved photocatalytic activity. J Mater Chem A 1(28):8101–8104

    Article  Google Scholar 

  10. Sun Y, Wang L, Yu X et al (2012) Facile synthesis of flower-like 3D ZnO superstructures via solution route. CrystEngComm 14(9):3199–3204

    Article  Google Scholar 

  11. Wang X, Ding J, Yao S et al (2014) High supercapacitor and adsorption behaviors of flower-like MoS2 nanostructures. J Mater Chem A 2(38):15958–15963

    Article  Google Scholar 

  12. Wang R, Yan X, Lang J et al (2014) A hybrid supercapacitor based on flower-like Co(OH)2 and urchin-like VN electrode materials. J Mater Chem A 2(32):12724–12732

    Article  Google Scholar 

  13. Liu Z, Ma R, Osada M et al (2006) Synthesis, anion exchange, and delamination of Co–Al layered double hydroxide: assembly of the exfoliated nanosheet/polyanion composite films and magneto-optical studies. J Am Chem Soc 128(14):4872–4880

    Article  Google Scholar 

  14. Abellán G, Carrasco JA, Coronado E, et al. (2014) In-Situ growth of ultrathin films of NiFe-LDHs: towards a hierarchical synthesis of bamboo-like carbon nanotubes. Adv Mater Interfaces 1(6):111–132

    Article  Google Scholar 

  15. He S, An Z, Wei M et al (2013) Layered double hydroxide-based catalysts: nanostructure design and catalytic performance. Chem Commun 49(53):5912–5920

    Article  Google Scholar 

  16. Li L, Gu W, Chen J et al (2014) Co-delivery of siRNAs and anti-cancer drugs using layered double hydroxide nanoparticles. Biomaterials 35(10):3331–3339

    Article  Google Scholar 

  17. Guan S, Liang R, Li C et al (2016) A layered drug nanovehicle toward targeted cancer imaging and therapy. J Mater Chem B 4(7):1331–1336

    Article  Google Scholar 

  18. Rezvani Z, Rad FA, Khodam F (2015) Synthesis and characterization of Mg–Al-layered double hydroxides intercalated with cubane-1, 4-dicarboxylate anions. Dalton T 44(3):988–996

    Article  Google Scholar 

  19. Lu Z, Zhu W, Lei X et al (2012) High pseudocapacitive cobalt carbonate hydroxide films derived from CoAl layered double hydroxides. Nanoscale 4(12):3640–3643

    Article  Google Scholar 

  20. Pu J, Tong Y, Wang S et al (2014) Nickel–cobalt hydroxide nanosheets arrays on Ni foam for pseudocapacitor applications. J Power Sour 250:250–256

    Article  Google Scholar 

  21. Daud M, Kamal MS, Shehzad F et al (2016) Graphene/layered double hydroxides nanocomposites: a review of recent progress in synthesis and applications. Carbon 104:241–252

    Article  Google Scholar 

  22. Hong W, Wang J, Niu L et al (2014) Controllable synthesis of CoAl LDH@Ni (OH)2 nanosheet arrays as binder-free electrode for supercapacitor applications. J Alloy Compd 608:297–303

    Article  Google Scholar 

  23. Abushrenta N, Wu X, Wang J et al (2015) Hierarchical co-based porous layered double hydroxide arrays derived via alkali etching for high-performance Supercapacitors. Sci Rep UK 5:13082

    Article  Google Scholar 

  24. Wu X, Jiang L, Long C et al (2015) Dual support system ensuring porous Co–Al hydroxide nanosheets with ultrahigh rate performance and high energy density for supercapacitors. Adv Funct Mater 25(11):1648–1655

    Article  Google Scholar 

  25. Zhang L, Hui KN, San Hui K et al (2016) High-performance hybrid supercapacitor with 3D hierarchical porous flower-like layered double hydroxide grown on nickel foam as binder-free electrode. J Power Sour 318:76–85

    Article  Google Scholar 

  26. Bai C, Sun S, Xu Y et al (2016) Facile one-step synthesis of nanocomposite based on carbon nanotubes and Nickel-Aluminum layered double hydroxides with high cycling stability for supercapacitors. J Colloid Interface Sci 480:57–62

    Article  Google Scholar 

  27. Fan G, Li F, Evans DG et al (2014) Catalytic applications of layered double hydroxides: recent advances and perspectives. Chem Soc Rev 43(20):7040–7066

    Article  Google Scholar 

  28. Lin H, Liu F, Wang X et al (2016) Graphene-coupled flower-like Ni3S2 for a free-standing 3D aerogel with an ultra-high electrochemical capacity. Electrochim Acta 191:705–715

    Article  Google Scholar 

  29. Song Y, Wang J, Li Z et al (2012) Self-assembled hierarchical porous layered double hydroxides by solvothermal method and their application for capacitors. Micropor Mesopor Mater 148(1):159–165

    Article  Google Scholar 

  30. Zhong LS, Hu JS, Liang HP et al (2006) Self-Assembled 3D flowerlike iron oxide nanostructures and their application in water treatment. Adv Mater 18(18):2426–2431

    Article  Google Scholar 

  31. Xu T, Wu X, Li Y et al (2015) Morphology and phase evolution of CoAl layered double hydroxides in an alkaline environment with enhanced pseudocapacitive performance. ChemElectroChem 2(5):679–683

    Article  Google Scholar 

  32. Li P, Huang PP, Wei FF et al (2014) Monodispersed Pd clusters generated in situ by their own reductive support for high activity and stability in cross-coupling reactions. J Mater Chem A 2(32):12739–12745

    Article  Google Scholar 

  33. Tyagi B, Sharma U, Jasra RV (2011) Epoxidation of styrene with molecular oxygen over binary layered double hydroxide catalysts. Appl Catal A Gen 408(1):171–177

    Article  Google Scholar 

  34. Feng Z, Yang Z, Yang B et al (2014) The application of Co–Al–hydrotalcite as a novel additive of positive material for nickel-metal hydride secondary cells. J Power Sour 266:22–28

    Article  Google Scholar 

  35. Lin JK, Jeng KL, Uan JY (2011) Crystallization of a chemical conversion layer that forms on AZ91D magnesium alloy in carbonic acid. Corros Sci 53(11):3832–3839

    Article  Google Scholar 

  36. Yu L, Shi N, Liu Q et al (2014) Facile synthesis of exfoliated Co–Al LDH-carbon nanotube composites with high performance as supercapacitor electrodes. Phys Chem Chem Phys 16(33):17936–17942

    Article  Google Scholar 

  37. Liu XX, Wang C, Dou YB et al (2014) A NiAl layered double hydroxide@ carbon nanoparticles hybrid electrode for high performance asymmetric supercapacitors. J Mater Chem A 2:1682–1685

    Article  Google Scholar 

  38. Sim H, Jo C, Yu T et al (2014) Reverse micelle synthesis of colloidal nickel–manganese layered double hydroxide nanosheets and their pseudocapacitive properties. Chem Eur J 20(45):14880–14884

    Article  Google Scholar 

  39. Han D, Xu P, Jing X et al (2013) Trisodium citrate assisted synthesis of hierarchical NiO nanospheres with improved supercapacitor performance. J Power Sour 235:45–53

    Article  Google Scholar 

  40. Hao J, Yang W, Zhang Z et al (2014) Facile synthesis of three dimensional hierarchical Co–Al layered double hydroxides on graphene as high-performance materials for supercapacitor electrode. J Colloid Interface Sci 426:131–136

    Article  Google Scholar 

  41. Zhang L, Hui KN, San Hui K et al (2015) Facile synthesis of porous CoAl-layered double hydroxide/graphene composite with enhanced capacitive performance for supercapacitors. Electrochim Acta 186:522–529

    Article  Google Scholar 

  42. Dutta S, Bhaumik A, Wu KCW (2014) Hierarchically porous carbon derived from polymers and biomass: effect of interconnected pores on energy applications. Energ Environ Sci 7(11):3574–3592

    Article  Google Scholar 

  43. Wang C, Liu J, Huang H (2015) Pseudocapacitive performance of Co(OH)2 enhanced by Ni(OH)2 formation on porous Ni/Cu electrode. Electrochim Acta 182:47–60

    Article  Google Scholar 

Download references

Acknowledgements

This project was supported by the Shanghai Leading Academic Discipline Project (J51503), Science and Technology Commission of Shanghai Municipality Project (14520503200), Shanghai Association for Science and Technology Achievements Transformation Alliance Program (LM201559), Shanghai Municipal Education Commission boosting project (15cxy39), National Natural Science Foundation of China (20976105), Shanghai Municipal Education Commission (Plateau Discipline Construction Program), Shanghai Talent Development Funding (201335).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongqing Wu.

Additional information

Sheng Han and Xing Chang have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3348 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, S., Chang, X., Wu, D. et al. Hierarchically porous cobalt aluminum layered double hydroxide flowers with enhanced capacitance performances. J Mater Sci 52, 6081–6092 (2017). https://doi.org/10.1007/s10853-017-0847-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-0847-6

Keywords

Navigation