Skip to main content

Advertisement

Log in

Enzyme-free uric acid electrochemical sensors using β-cyclodextrin-modified carboxylic acid-functionalized carbon nanotubes

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Carboxylic acid-functionalized multi-walled carbon nanotubes (COOH-MWCNT) were modified via ultrasonication with β-cyclodextrin (β-CD) to obtain a COOH-MWCNT:β-CD nanocomposite material for the purpose of developing an enzyme-free electrochemical sensor for uric acid—a clinically relevant molecule implemented in pregnancy-induced hypertension diagnosis. The nanocomposite material is deposited onto glassy carbon electrodes and subsequently capped with layers of Nafion and Hydrothane polyurethane. The surface morphology and electronic structure of the nanocomposite material were characterized using UV–Vis, TEM, and FTIR. The performance of the electrochemical sensor was measured through direct injection of UA during amperometry. With the high surface area of the COOH-MWCNT in concert with the selectivity provided by β-CD, the composite system outperforms similar COOH-MWCNT systems, displaying enhanced UA sensitivity versus films with only COOH-MWCNT. With the improved sensitivity (4.28 ± 0.11 µA mM−1) and fast response time (4.0 ± 0.5 s), the sensors offer wide detection of UA across clinically relevant ranges (100–700 μM) as well as demonstrated selectivity against various interferents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Erden PE, Kılıç E (2013) A review of enzymatic uric acid biosensors based on amperometric detection. Talanta 107:312–323

    Article  Google Scholar 

  2. Li Y, Zhai X, Wang H, Liu X, Guo L, Ji X, Wang L, Qiu H, Liu X (2015) Non-enzymatic sensing of uric acid using a carbon nanotube ionic-liquid paste electrode modified with poly (β-cyclodextrin). Microchim Acta 182:1877–1884

    Article  Google Scholar 

  3. Wu S, Wang T, Gao Z, Xu H, Zhou B, Wang C (2008) Selective detection of uric acid in the presence of ascorbic acid at physiological pH by using a β-cyclodextrin modified copolymer of sulfanilic acid and N-acetylaniline. Biosens Bioelectron 23:1776–1780

    Article  Google Scholar 

  4. Chen X, Wu G, Cai Z, Oyama M, Chen X (2014) Advances in enzyme-free electrochemical sensors for hydrogen peroxide, glucose, and uric acid. Microchim Acta 181:689–705

    Article  Google Scholar 

  5. Chauhan N, Pundir CS (2011) An amperometric uric acid biosensor based on multiwalled carbon nanotube-gold nanoparticle composite. Anal Biochem 413:97–103

    Article  Google Scholar 

  6. Retna Raj C, Ohsaka T (2003) Voltammetric detection of uric acid in the presence of ascorbic acid at a gold electrode modified with a self-assembled monolayer of heteroaromatic thiol. J Electroanal Chem 540:69–77

    Article  Google Scholar 

  7. Lakshmi D, Whitcombe MJ, Davis F, Sharma PS, Prasad BB (2011) Electrochemical detection of uric acid in mixed and clinical samples: a review. Electroanalysis 23:305–320

    Article  Google Scholar 

  8. Moraes ML, Rodrigues Filho UP, Oliveira ON, Ferreira M (2007) Immobilization of uricase in layer-by-layer films used in amperometric biosensors for uric acid. J Solid State Electrochem 11:1489–1495

    Article  Google Scholar 

  9. Wang Z, Wang Y, Luo G (2002) A selective voltammetric method for uric acid detection at β-cyclodextrin modified electrode incorporating carbon nanotubes. Analyst 127:1353–1358

    Article  Google Scholar 

  10. Erden PE, Kaçar C, Öztürk F, Kılıç E (2015) Amperometric uric acid biosensor based on poly(vinylferrocene)-gelatin-carboxylated multiwalled carbon nanotube modified glassy carbon electrode. Talanta 134:488–495

    Article  Google Scholar 

  11. Li Y, Ran G, Yi WJ, Luo HQ, Li NB (2012) A glassy carbon electrode modified with graphene and poly(acridine red) for sensing uric acid. Microchim Acta 178:115–121

    Article  Google Scholar 

  12. Stafford RS (1990) Cesarean section use and source of payment: an analysis of California hospital discharge abstracts. Am J Public Health 80:313–315

    Article  Google Scholar 

  13. Roberts JM, Bodnar LM, Lain KY, Hubel CA, Markovic N, Ness RB, Powers RW (2005) Uric acid is as important as proteinuria in identifying fetal risk in women with gestational hypertension. Hypertension 46:1263–1269

    Article  Google Scholar 

  14. Conway GE, Lambertson RH, Schwarzmann MA, Pannell MJ, Kerins HW, Rubenstein KJ, Dattelbaum JD, Leopold MC (2016) Layer-by-layer design and optimization of xerogel-based amperometric first generation biosensors for uric acid. J Electroanal Chem 775:135–145

    Article  Google Scholar 

  15. Poulos NG, Hall JR, Leopold MC (2015) Functional layer-by-layer design of xerogel-based first-generation amperometric glucose biosensors. Langmuir 31:1547–1555

    Article  Google Scholar 

  16. DiPasquale LT, Poulos NG, Hall JR, Minocha A, Bui TA, Leopold MC (2015) Structure-function relationships affecting the sensing mechanism of monolayer-protected cluster doped xerogel amperometric glucose biosensors. J Colloid Interface Sci 450:202–212

    Article  Google Scholar 

  17. Wang J (2005) Carbon-nanotube based electrochemical biosensors: a review. Electroanalysis 17:7–14

    Article  Google Scholar 

  18. Alarcón-Ángeles G, Guix M, Silva WC, Ramírez-Silva MT, Palomar-Pardavé M, Romero-Romo M, Merkoçi A (2010) Enzyme entrapment by β-cyclodextrin electropolymerization onto a carbon nanotubes-modified screen-printed electrode. Biosens Bioelectron 26:1768–1773

    Article  Google Scholar 

  19. Wang Z, Dong X, Li J (2008) An inlaying ultra-thin carbon paste electrode modified with functional single-wall carbon nanotubes for simultaneous determination of three purine derivatives. Sens Actuators B Chem 131:411–416

    Article  Google Scholar 

  20. Bello A, Giannetto M, Mori G, Seeber R, Terzi F, Zanardi C (2007) Optimization of the DPV potential waveform for determination of ascorbic acid on PEDOT-modified electrodes. Sens Actuators B Chem 121:430–435

    Article  Google Scholar 

  21. Du J, Yue R, Yao Z, Jiang F, Du Y, Yang P, Wang C (2013) Nonenzymatic uric acid electrochemical sensor based on graphene-modified carbon fiber electrode. Colloids Surf A Physicochem Eng Asp 419:94–99

    Article  Google Scholar 

  22. Wayu MB, King JE, Johnson JA, Chusuei CC (2015) A zinc oxide carbon nanotube based sensor for in situ monitoring of hydrogen peroxide in swimming pools. Electroanalysis 27:2552–2558

    Article  Google Scholar 

  23. Wang J, Musameh M, Lin Y (2003) Solubilization of carbon nanotubes by Nafion toward the preparation of amperometric biosensors. J ACS 125:2408–2409

    Google Scholar 

  24. Shi J, Claussen JC, McLamore ES, ul Haque A, Jaroch D, Diggs AR, Calvo-Marzal P, Rickus JL, Porterfield DM (2011) A comparative study of enzyme immobilization strategies for multi-walled carbon nanotube glucose biosensors. Nanotechnology 22:355502

    Article  Google Scholar 

  25. Gooding JJ (2005) Nanostructuring electrodes with carbon nanotubes: a review on electrochemistry and applications for sensing. Electrochim Acta 50:3049–3060

    Article  Google Scholar 

  26. Yang H, Zhu Y, Chen D, Li C, Chen S, Ge Z (2010) Electrochemical biosensing platforms using poly-cyclodextrin and carbon nanotube composite. Biosens Bioelectron 26:295–298

    Article  Google Scholar 

  27. Li J, Feng H, Feng Y, Liu J, Liu Y, Jiang J, Qian D (2014) A glassy carbon electrode modified with β-cyclodextin, multiwalled carbon nanotubes and graphene oxide for sensitive determination of 1,3-dinitrobenzene. Microchim Acta 181:1369–1377

    Article  Google Scholar 

  28. Gao Y-S, Wu L-P, Zhang K-X, Xu J-K, Lu L-M, Zhu X-F, Wu Y (2015) Electroanalytical method for determination of shikonin based on the enhancement effect of cyclodextrin functionalized carbon nanotubes. Chin Chem Lett 26:613–618

    Article  Google Scholar 

  29. He Y, Xu Z, Yang Q, Wu F, Liang L (2015) Supramolecular modification of multi-walled carbon nanotubes with β-cyclodextrin for better dispersibility. J Nanopart Res 17:1–10

    Article  Google Scholar 

  30. Xing Y, Li L, Chusuei CC, Hull RV (2005) Sonochemical oxidation of multiwalled carbon nanotubes. Langmuir 21:4185–4190

    Article  Google Scholar 

  31. Tian L, Zhang B, Sun D, Chen R, Wang B, Li T (2014) A thin poly(acridine orange) film containing reduced graphene oxide for voltammetric simultaneous sensing of ascorbic acid and uric acid. Microchim Acta 181:589–595

    Article  Google Scholar 

  32. Rafati AA, Afraz A, Hajian A, Assari P (2014) Simultaneous determination of ascorbic acid, dopamine, and uric acid using a carbon paste electrode modified with multiwalled carbon nanotubes, ionic liquid, and palladium nanoparticles. Microchim Acta 181:1999–2008

    Article  Google Scholar 

  33. Szejtli J (1998) Introduction and general overview of cyclodextrin chemistry. Chem Rev 98:1743–1754

    Article  Google Scholar 

  34. Soylemez S, Hacioglu SO, Kesik M, Unay H, Cirpan A, Toppare L (2014) A novel and effective surface design: conducting polymer/β-cyclodextrin host-guest system for cholesterol biosensor. Acs Appl Mater Interfaces 6:18290–18300

    Article  Google Scholar 

  35. Zheng L, Wu S, Lin X, Nie L, Rui L (2001) Selective determination of uric acid by using a β-cyclodextrin modified electrode. Electroanalysis 13:1351–1354

    Article  Google Scholar 

  36. Wayu MB, DiPasquale LT, Schwarzmann MA, Gillespie SD, Leopold MC (2016) Electropolymerization of β-cyclodextrin onto multi-walled carbon nanotube composite films for enhanced selective detection of uric acid. J Electroanal Chem 783:192–200

    Article  Google Scholar 

  37. Fang B, Zhang C, Zhang W, Wang G (2009) A novel hydrazine electrochemical sensor based on a carbon nanotube-wired ZnO nanoflower-modified electrode. Electrochim Acta 55:178–182

    Article  Google Scholar 

  38. Wayu MB, Spidle RT, Devkota T, Deb AK, Delong RK, Ghosh KC, Wanekaya AK, Chusuei CC (2013) Morphology of hydrothermally synthesized ZnO nanoparticles tethered to carbon nanotubes affects electrocatalytic activity for H2O2 detection. Electrochim Acta 97:99–104

    Article  Google Scholar 

  39. Koh A, Lu Y, Schoenfisch MH (2013) Fabrication of nitric oxide-releasing porous polyurethane membranes-coated needle-type implantable glucose biosensors. Anal Chem 85:10488–10494

    Article  Google Scholar 

  40. Freeman MH, Hall JR, Leopold MC (2013) Monolayer-protected nanoparticle doped xerogels as functional components of amperometric glucose biosensors. Anal Chem 85:4057–4065

    Article  Google Scholar 

  41. Wayu MB, Pannell MJ, Leopold MC (2016) Layered xerogel films incorporating monolayer-protected cluster networks on platinum-black-modified electrodes for enhanced sensitivity in first-generation uric acid biosensing. ChemElectroChem 3:1245–1252

    Article  Google Scholar 

  42. Kim C, Seo K, Kim B, Park N, Choi YS, Park KA, Lee YH (2003) Tip-functionalized carbon nanotubes under electric fields. Phys Rev B 68:115403

    Article  Google Scholar 

  43. Fei T, Jiang K, Jiang F, Mu R, Zhang T (2014) Humidity switching properties of sensors based on multiwalled carbon nanotubes/polyvinyl alcohol composite films. J Appl Polym Sci 131:39726

    Google Scholar 

  44. Cao X, Luo L, Ding Y, Yu D, Gao Y (2009) Simultaneous determination of dopamine and uric acid on Nafion/sodium dodecylbenzenesulfonate composite film modified glassy carbon electrode. J Appl Electrochem 39:1603–1608

    Article  Google Scholar 

  45. Chen K, Conway GE, Hamilton GA, Trawick ML, Leopold MC (2016) Electropolymerized layers as selective membranes in first generation uric acid biosensors. J Appl Electrochem 46:603–615

    Article  Google Scholar 

  46. Koh A, Riccio DA, Sun B, Carpenter AW, Nichols SP, Schoenfisch MH (2011) Fabrication of nitric oxide-releasing polyurethane glucose sensor membranes. Biosens Bioelectron 28:17–24

    Article  Google Scholar 

Download references

Acknowledgements

This research was generously supported by funding from the National Science Foundation (CHE–1401593), Commonwealth Health Research Board, the College of Arts and Sciences (MAS), and the Department of Chemistry’s Puryear–Topham–Pierce Endowment (SDG). We would like to specifically thank Microscopy Director Christine A. Lacy (TEM and SEM) for her important contributions to this work. We gratefully acknowledge the following people for making research possible at the University of Richmond: Drs. T. Leopold, R. Kanters, D. Kellogg, R. Miller, and R. Coppage, as well as Russ Collins, Phil Joseph, Mandy Mallory, and Lamont Cheatham.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael C. Leopold.

Additional information

Margaret A. Schwarzmann and Samuel D. Gillespie have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 7141 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wayu, M.B., Schwarzmann, M.A., Gillespie, S.D. et al. Enzyme-free uric acid electrochemical sensors using β-cyclodextrin-modified carboxylic acid-functionalized carbon nanotubes. J Mater Sci 52, 6050–6062 (2017). https://doi.org/10.1007/s10853-017-0844-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-0844-9

Keywords

Navigation