Skip to main content
Log in

Investigation of the damping properties of hindered phenol AO-80/polyacrylate hybrids using molecular dynamics simulations in combination with experimental methods

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Hindered phenol AO-80/polyacrylate rubber damping hybrids are novel damping materials. They were fabricated to study the influence of the content of the hindered phenol AO-80 on their damping performance and mechanical properties. Molecule dynamics (MD) simulation, a molecular-level method, was applied to elucidate the microstructure and mechanism of the hybrids through the radial distribution function (RDF), fractional free volume (FFV), and cohesive energy density (CED). MD simulation results revealed that three types of hydrogen bonds, namely, type A (AO-80)–OH···O=C-(ACM), type B (AO-80)–OH···O=C–(AO-80), and type C (AO-80)–OH···OH–(AO-80), were formed in the AO-80/ACM hybrids. Meanwhile, the experimental results using positron annihilation lifetime spectrometry (PALS), differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), and dynamic mechanical thermal analysis (DMTA) found that the introduction of AO-80 could remarkably improve the damping properties of the hybrids, including an increase in the glass transition temperature (T g) as well as the loss factor (tan δ).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

Abbreviations

AO-80:

3-(1,1-Dimethylethyl)-4-hydroxy-5-methyl-benzenepropanoic acid 2,4,8,10-tetraoxaspiro[5.5]undecane-3,9-diylbis(2,2-dimethyl-2,1-ethanediyl) ester

ACM:

Polyacrylate rubber

MD:

Molecular dynamics

RDF:

Radial distribution function

FFV:

Fractional free volume

PALS:

Positron annihilation lifetime spectrometry

CED:

Cohesive energy density

DSC:

Differential scanning calorimetry

FTIR:

Fourier transform infrared spectroscopy

DMTA:

Dynamic mechanical thermal analysis

T g :

Glass transition temperature

tan δ :

Loss factor

ps:

Picosecond

References

  1. Pauling L (1963) The nature of the chemical bond, 3rd edn. Cornell University Press, Ithaca

    Google Scholar 

  2. Nishio M (2011) The CH/π hydrogen bond in chemistry. Conformation, supramolecules, optical resolution and interactions involving carbohydrates. Phys Chem Chem Phys 13:13873–13900

    Article  Google Scholar 

  3. Steiner T (2002) The hydrogen bond in the solid state. Angew Chem Int Ed 41:48–76

    Article  Google Scholar 

  4. Watson JD, Crick FHC (1953) Molecular structure of nucleic acids. Nature 171:737–738

    Article  Google Scholar 

  5. Francisco M, van den Bruinhorst A, Kroon MC (2012) New natural and renewable low transition temperature mixtures (LTTMs): screening as solvents for lignocellulosic biomass processing. Green Chem 14:2153–2157

    Article  Google Scholar 

  6. Ambrosio P, Cazzulani G, Resta F, Ripamonti F (2014) An optimal vibration control logic for minimising fatigue damage in flexible structures. J Sound Vib 333:1269–1280

    Article  Google Scholar 

  7. Leblanc JL (1997) A molecular explanation for the origin of bound rubber in carbon black filled rubber compounds. J Appl Polym Sci 66:2257–2268

    Article  Google Scholar 

  8. Tucker N, Lindsey K (2002) General properties of composites: stiffness, strength and toughness. In: Tucker N, Lindsey K (eds) An introduction to automotive composites, 1st edn. Rapra Technology Limited, UK, pp 59–61

    Google Scholar 

  9. Lewis CL, Stewart K, Anthamatten M (2014) The influence of hydrogen bonding side-groups on viscoelastic behavior of linear and network polymers. Macromolecules 47:729–740

    Article  Google Scholar 

  10. Mooney M (1940) A theory of large elastic deformation. J Appl Phys 11:582–592

    Article  Google Scholar 

  11. Lion A (1997) On the large deformation behaviour of reinforced rubber at different temperatures. J Mech Phys Solids 45:1805–1834

    Article  Google Scholar 

  12. Miehe C, Keck J (2000) Superimposed finite elastic–viscoelastic–plastoelastic stress response with damage in filled rubbery polymers. Experiments, modelling and algorithmic implementation. J Mech Phys Solids 48:323–365

    Article  Google Scholar 

  13. Amin A, Alam MS, Okui Y (2002) An improved hyperelasticity relation in modeling viscoelasticity response of natural and high damping rubbers in compression: experiments, parameter identification and numerical verification. Mech Mater 34:75–95

    Article  Google Scholar 

  14. Cheng M, Chen W (2003) Experimental investigation of the stress–stretch behavior of EPDM rubber with loading rate effects. Int J Solids Struct 40:4749–4768

    Article  Google Scholar 

  15. Venkatanarayanan PS, Stanley AJ (2012) Intermediate velocity bullet impact response of laminated glass fiber reinforced hybrid (HEP) resin carbon nano composite. Aerosp Sci Technol 21:75–83

    Article  Google Scholar 

  16. Sperling LH (2012) Interpenetrating polymer networks and related materials. Springer, Berlin

    Google Scholar 

  17. Zhang F, He G, Xu K, Wu H, Guo S (2015) The damping and flame-retardant properties of poly(vinyl chloride)/chlorinated butyl rubber multilayered composites. J Appl Polym Sci 132:41259

    Google Scholar 

  18. Chang MCO, Thomas DA, Sperling LH (1987) Characterization of the area under loss modulus and tan δ–temperature curves: acrylic polymers and their sequential interpenetrating polymer networks. J Appl Polym Sci 34:409–422

    Article  Google Scholar 

  19. Shi XY, Bi WN, Zhao SG (2012) DMA analysis of the damping of ethylene–vinyl acetate/acrylonitrile butadiene rubber blends. J Appl Polym Sci 124:2234–2239

    Article  Google Scholar 

  20. Meiorin C, Aranguren MI, Mosiewicki MA (2012) Vegetable oil/styrene thermoset copolymers with shape memory behavior and damping capacity. Polym Int 61:735–742

    Article  Google Scholar 

  21. Niu X, Yang X, Brochu P, Stoyanov H, Yun S, Yu Z, Pei Q (2012) Bistable large-strain actuation of interpenetrating polymer networks. Adv Mater 24:6513–6519

    Article  Google Scholar 

  22. Wu C (2003) Interphase migration of a hindered phenol compound in acrylate rubber/chlorinated polypropylene blends. Polym J 35:286–289

    Article  Google Scholar 

  23. Song M, Zhao X, Li Y, Hu S, Zhang L, Wu S (2014) Molecular dynamics simulations and microscopic analysis of the damping performance of hindered phenol AO-60/nitrile-butadiene rubber composites. RSC Adv 4:6719–6729

    Article  Google Scholar 

  24. Zhao XY, Xiang P, Tian M, Fong H, Jin R, Zhang L (2007) Nitrile butadiene rubber/hindered phenol nanocomposites with improved strength and high damping performance. Polymer 48:6056–6063

    Article  Google Scholar 

  25. Qiao B, Zhao X, Yue D, Zhang L, Zhu S (2012) A combined experiment and molecular dynamics simulation study of hydrogen bonds and free volume in nitrile-butadiene rubber/hindered phenol damping mixtures. J Mater Chem 22:12339–12348

    Article  Google Scholar 

  26. Yan LT, Xie XM (2013) Computational modeling and simulation of nanoparticle self-assembly in polymeric systems: structures, properties and external field effects. Prog Polym Sci 38:369–405

    Article  Google Scholar 

  27. Liu J, Gao Y, Cao D, Zhang L, Guo Z (2011) Nanoparticle dispersion and aggregation in polymer nanocomposites: insights from molecular dynamics simulation. Langmuir 27:7926–7933

    Article  Google Scholar 

  28. Meng D, Kumar SK, Cheng S, Grest GS (2013) Simulating the miscibility of nanoparticles and polymer melts. Soft Matter 9:5417–5427

    Article  Google Scholar 

  29. Loya A, Ren G (2015) Molecular dynamics simulation study of rheological properties of CuO–water nanofluid. J Mater Sci 50:4075–4082. doi:10.1007/s10853-015-8963-7

    Article  Google Scholar 

  30. Meunier M (2005) Diffusion coefficients of small gas molecules in amorphous cis-1, 4-polybutadiene estimated by molecular dynamics simulations. J Chem Phys 123:134906

    Article  Google Scholar 

  31. Luo Z, Jiang J (2010) Molecular dynamics and dissipative particle dynamics simulations for the miscibility of poly(ethylene oxide)/poly(vinyl chloride) blends. Polymer 51:291–299

    Article  Google Scholar 

  32. Sun H (1993) Ab initio characterizations of molecular structures, conformation energies, and hydrogen-bonding properties for polyurethane hard segments. Macromolecules 26:5924–5936

    Article  Google Scholar 

  33. Sun H (1998) COMPASS: an ab initio force-field optimized for condensed-phase applications overview with details on alkane and benzene compounds. J Phys Chem B 102:7338–7364

    Article  Google Scholar 

  34. McQuaid MJ, Sun H, Rigby D (2004) Development and validation of COMPASS force field parameters for molecules with aliphatic azide chains. J Comput Chem 25:61–71

    Article  Google Scholar 

  35. Karimi-Varzaneh HA, Carbone P, Müller-Plathe F (2008) Hydrogen bonding and dynamic crossover in Polyamide-66: a molecular dynamics simulation study. Macromolecules 41:7211–7218

    Article  Google Scholar 

  36. Zhu W, Wang X, Xiao J (2009) Molecular dynamics simulations of AP/HMX composite with a modified force field. J Hazard Mater 167:810–816

    Article  Google Scholar 

  37. Skrdla PJ, Robertson RT (2005) Semiempirical equations for modeling solid-state kinetics based on a maxwell-boltzmann distribution of activation energies: applications to a polymorphic transformation under crystallization slurry conditions and to the thermal decomposition of AgMnO4 crystals. J Phys Chem B 109:10611–10619

    Article  Google Scholar 

  38. Zimm BH (1948) The scattering of light and the radial distribution function of high polymer solutions. J Chem Phys 16:1093–1099

    Article  Google Scholar 

  39. Connolly ML (1983) Solvent-accessible surfaces of proteins and nucleic acids. Science 221:709–713

    Article  Google Scholar 

  40. Dong AW, Celesta F, Waddington LJ, Hill AJ, Boy BJ, Drummond CJ (2015) Application of positron annihilation lifetime spectroscopy (PALS) to study the nanostructure in amphiphile self-assembly materials: phytantriol cubosomes and hexosomes. Phy Chem Chem Phys 17:1705–1715

    Article  Google Scholar 

  41. Geise GM, Doherty CM, Hill AJ, Freemana BD, Paul DR (2014) Free volume characterization of sulfonated styrenic pentablock copolymers using positron annihilation lifetime spectroscopy. J Membr Sci 453:425–434

    Article  Google Scholar 

  42. Jacobsohn LG, Serivalsatit K, Quarles CA, Ballato J (2015) Investigation of Er-doped Sc2O3 transparent ceramics by positron annihilation spectroscopy. J Mater Sci 50:3183–3188. doi:10.1007/s10853-015-8881-8

    Google Scholar 

  43. Cheng ML, Sun YM, Chen H, Jean YC (2009) Change of structure and free volume properties of semi-crystalline poly (3-hydroxybutyrate-co-3-hydroxyvalerate) during thermal treatments by positron annihilation lifetime. Polymer 50:1957–1964

    Article  Google Scholar 

  44. Bamford D, Dlubek G, Dommet G et al (2006) Positron/positronium annihilation as a probe for chemical environments of free volume holes in fluoropolymers. Polymer 47:3486–3493

    Article  Google Scholar 

  45. Scatchard G (1931) Equilibria in non-electrolyte solutions in relation to the vapor pressures and densities of the components. Chem Rev 8:321

    Article  Google Scholar 

  46. Qu L, Huang G, Wu J, Tang Z (2007) Damping mechanism of chlorobutyl rubber and phenolic resin vulcanized blends. J Mater Sci 42:7256–7262. doi:10.1007/s10853-006-1466-9

    Article  Google Scholar 

Download references

Acknowledgements

The financial supports of the National Natural Science Foundation of China under Grant No. 51473012, 51320105012, and National Science and Technology Supporting Plan under Grant No. 2014BAE14B01 are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sizhu Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, D., Zhao, X., Chan, T. et al. Investigation of the damping properties of hindered phenol AO-80/polyacrylate hybrids using molecular dynamics simulations in combination with experimental methods. J Mater Sci 51, 5760–5774 (2016). https://doi.org/10.1007/s10853-016-9878-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-9878-7

Keywords

Navigation