Skip to main content
Log in

Hybrid adsorbent nonwoven structures: a review of current technologies

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Adsorptive nonwoven substrates are composite media that contain adsorbent materials within their fibrous structure; the methods to incorporate adsorbents in nonwoven webs determine their adsorption capacity. The key objective for hybridization is to immobilize the adsorbent while controlling the packing density and pressure drop of the composite media. Loading percentage of adsorbents, the accessible portion of their surface area, their attachment and stability within the structure, and time/cost/process to incorporate them is different for each hybridization technique. The general limitations associated with hybrid adsorptive nonwovens are summarized as surface area loss, process control, and production time/cost. The primary focus of this review is on hybridization techniques that incorporate activated carbons and/or metal-organic frameworks (MOFs) in nonwoven structures, used in gas filtration. It was concluded that coating, thermal bonding, lamination, and coform methods have higher throughputs compared to electrospinning. In addition, coform method provides better control over accessible surface area of adsorbents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Richards J (1995) Control of gaseous emissions: student manual, APTI Course 415. Industrial Extension Service, College of Engineering, North Carolina State University, Raleigh, NC

  2. Rouquerol F (1999) Adsorption by powders and porous solids: principles, methodology, and applications. Elsevier, New York

    Google Scholar 

  3. Yong Z, Mata V, Rodrigues A (2001) Adsorption of carbon dioxide on chemically modified high surface area carbon-based adsorbents at high temperature. Adsorpt J Int Adsorpt Soc 7:41–50

    Article  Google Scholar 

  4. Zhou L (2007) Adsorption: progress in fundamental and application research: selected reports at the 4th Pacific Basin Conference on Adsorption Science and Technology: Tianjin, China, 22–26 May 2006. World Scientific, Singapore; Hackensack, NJ

  5. Bandosz TJ (2006) Activated carbon surfaces in environmental remediation. Elsevier, San Diego

  6. Tóth J (2002) Adsorption: theory, modeling, and analysis. Marcel Dekker, New York

    Google Scholar 

  7. Ruthven DM (1984) Principles of adsorption and adsorption processes. Wiley, New York

    Google Scholar 

  8. Economy J, Daley M, Mangun C (1996) Activated carbon fibers—past, present, and future. Abstr Pap Am Chem Soc 211:321–358

    Google Scholar 

  9. Yang RT (2003) Adsorbents: fundamentals and applications. Wiley, Hoboken, NJ

    Book  Google Scholar 

  10. Bansal RC (2005) Activated carbon adsorption. Taylor & Francis, Boca Raton

    Book  Google Scholar 

  11. Mueller U, Schubert M, Teich F, Puetter H, Schierle-Arndt K, Pastre J (2006) Metal-organic frameworks—prospective industrial applications. J Mater Chem 16:626–636

    Article  Google Scholar 

  12. Li J, Kuppler RJ, Zhou H (2009) Selective gas adsorption and separation in metal-organic frameworks. Chem Soc Rev 38:1477–1504

    Article  Google Scholar 

  13. Farrusseng D (ed) (2011) Metal-organic frameworks: applications from catalysis to gas storage. Wiley, Weinheim

    Google Scholar 

  14. Kwiatkowski JFE (ed) (2012) Activated carbon: classifications, properties and applications. Nova Science Publishers, New York

    Google Scholar 

  15. Ferey G, Mellot-Draznieks C, Serre C, Millange F, Dutour J, Surble S, Margiolaki I (2005) A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science 309:2040–2042

    Article  Google Scholar 

  16. Horcajada P, Serre C, Maurin G, Ramsahye NA, Balas F, Vallet-Regi M, Sebban M et al (2008) Flexible porous metal-organic frameworks for a controlled drug delivery. J Am Chem Soc 130:6774–6780

    Article  Google Scholar 

  17. Koh K, Wong-Foy AG, Matzger AJ (2009) A porous coordination copolymer with over 5000 m(2)/g BET surface area. J Am Chem Soc 131:4184–4185

    Article  Google Scholar 

  18. Low JJ, Benin AI, Jakubczak P, Abrahamian JF, Faheem SA, Willis RR (2009) Virtual high throughput screening confirmed experimentally: porous coordination polymer hydration. J Am Chem Soc 131:15834–15842

    Article  Google Scholar 

  19. Yan Y, Telepeni I, Yang S, Lin X, Kockelmann W, Dailly A, Blake AJ et al (2010) Metal-organic polyhedral frameworks: high H-2 adsorption capacities and neutron powder diffraction studies. J Am Chem Soc 132:4092–4094

    Article  Google Scholar 

  20. Zhou H, Long JR, Yaghi OM (2012) Introduction to metal-organic frameworks. Chem Rev 112:673–674

    Article  Google Scholar 

  21. Das D, Pourdeyhimi B (2014) Composite nonwoven materials: structure, properties and applications. Woodhead Publishing, Cambridge

    Google Scholar 

  22. Mahouche-Chergui S, Guerrouache M, Carbonnier B, Chehimi MM (2013) Polymer-immobilized nanoparticles. Colloids Surf Physicochem Eng Aspects 439:43–68

    Article  Google Scholar 

  23. Schlacchter J (2012) Respirator filter canister. US Patent 8,262,782

  24. Wagner J (2001) Membrane filtration handbook (practical tips and hints). Osmonics Inc, Minnetonka, Minnesota

    Google Scholar 

  25. Fuchs H, Kittelmann W, Lünenschloss J (2003) Nonwoven fabrics. Wiley, Weinheim

    Google Scholar 

  26. Hutten IM (2007) Handbook of nonwoven filter media. Butterworth-Heinemann, Oxford, Burlington, MA

    Google Scholar 

  27. Russell SJ (2007) Handbook of nonwovens. CRC Press, Cambridge

    Book  Google Scholar 

  28. Billingsley BG, Jones ME (2013) Filter element utilizing shaped particle-containing nonwoven web. US Patent 8,535,406

  29. Das D, Pradhan AK, Chattopadhyay R, Singh S (2012) Composite nonwovens. Text Prog 44:1–84

    Article  Google Scholar 

  30. Alexandre M, Dubois P (2000) Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater Sci Eng R-Rep 28:1–63

    Article  Google Scholar 

  31. Kralik M, Corain B, Zecca M (2000) Catalysis by metal nanoparticles supported on functionalized polymers. Chem Pap 54:254–264

    Google Scholar 

  32. Lee H, Yeo S, Jeong S (2003) Antibacterial effect of nanosized silver colloidal solution on textile fabrics. J Mater Sci 38:2199–2204. doi:10.1023/A:1023736416361

    Article  Google Scholar 

  33. Ray S, Okamoto M (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci 28:1539–1641

    Article  Google Scholar 

  34. Cong H, Radosz M, Towler BF, Shen Y (2007) Polymer–inorganic nanocomposite membranes for gas separation. Sep Purif Technol 55:281–291

    Article  Google Scholar 

  35. Rozenberg BA, Tenne R (2008) Polymer-assisted fabrication of nanoparticles and nanocomposites. Prog Polym Sci 33:40–112

    Article  Google Scholar 

  36. Zou H, Wu S, Shen J (2008) Polymer/silica nanocomposites: preparation, characterization, properties, and applications. Chem Rev 108:3893–3957

    Article  Google Scholar 

  37. Cui X, Li CM, Bao H, Zheng X, Lu Z (2008) In situ fabrication of silver nanoarrays in hyaluronan/PDDA layer-by-layer assembled structure. J Colloid Interface Sci 327:459–465

    Article  Google Scholar 

  38. Spitalsky Z, Tasis D, Papagelis K, Galiotis C (2010) Carbon nanotube-polymer composites: chemistry, processing, mechanical and electrical properties. Prog Polym Sci 35:357–401

    Article  Google Scholar 

  39. Chergui SM, Ledebt A, Mammeri F, Herbst F, Carbonnier B, Ben Romdhane H, Delamar M et al (2010) Hairy carbon nanotube@nano-Pd heterostructures: design, characterization, and application in suzuki C-C coupling reaction. Langmuir 26:16115–16121

    Article  Google Scholar 

  40. Fujii S, Matsuzawa S, Nakamura Y, Ohtaka A, Teratani T, Akamatsu K, Tsuruoka T et al (2010) Synthesis and characterization of polypyrrole-palladium nanocomposite-coated latex particles and their use as a catalyst for suzuki coupling reaction in aqueous media. Langmuir 26:6230–6239

    Article  Google Scholar 

  41. Mirkhalaf F, Graves JE (2012) Nanostructured electrocatalysts immobilised on electrode surfaces and organic film templates. Chem Pap 66:472–483

    Article  Google Scholar 

  42. Bandari R, Buchmeiser MR (2012) Polymeric monolith supported Pt-nanoparticles as ligand-free catalysts for olefin hydrosilylation under batch and continuous conditions. Catal Sci Technol 2:220–226

    Article  Google Scholar 

  43. Guerrouache M, Mahouche-Chergui S, Chehimi MM, Carbonnier B (2012) Site-specific immobilisation of gold nanoparticles on a porous monolith surface by using a thiol-yne click photopatterning approach. Chem Commun 48:7486–7488

    Article  Google Scholar 

  44. Pitakteeratham N, Hafuka A, Satoh H, Watanabe Y (2013) High efficiency removal of phosphate from water by zirconium sulfate-surfactant micelle mesostructure immobilized on polymer matrix. Water Res 47:3583–3590

    Article  Google Scholar 

  45. Elkady MF, Ibrahim AM, El-Latif MMA (2011) Assessment of the adsorption kinetics, equilibrium and thermodynamic for the potential removal of reactive red dye using eggshell biocomposite beads. Desalination 278:412–423

    Article  Google Scholar 

  46. Sutherland K (2008) Filters and filtration handbook. Elsevier, Burlington, MA

    Google Scholar 

  47. Purchas DB (2002) Handbook of filter media. Elsevier, New York

    Google Scholar 

  48. D’Amore A, Haghi AK (2014) Bioscience methodologies in physical chemistry: an engineering and molecular approach. In: D’Amore A, Haghi AK, Zaikov GE, D’Amore A (eds) editor of compilation. Haghi AK, editor of compilation, Ebrary I (eds) Formation of metal organic frameworks. Apple Academic Press, Toronto, p 111

  49. Sievert J (2011) Nonwovens in filtration. In: FILTECH 2011 conference proceedings, Wiesbaden, Germany

  50. Alhakawati M, Banks C, Smallman D (2003) Evaluation of two types of polyurethane for the immobilisation of Rhizopus oryzae for copper uptake. Water Sci Technol 47:143–150

    Google Scholar 

  51. Butler I (1999) Spunbond-meltblown technology handbook. INDA, Association of the Nonwoven Fabrics Industry, Raleigh, NC

  52. Fedorova N, Pourdeyhimi B (2007) High strength nylon micro- and nanofiber based nonwovens via spunbonding. J Appl Polym Sci 104:3434–3442

    Article  Google Scholar 

  53. Pourdeyhimi B, Sharp S (2011) High Strength, Durable Fabrics Produced By Fibrillating Multilobal Fibers. US Patent 7,883,772

  54. Pourdeyhimi B, Fedorova N, Sharp S (2011) Micro and nanofibers Spunbonded fabrics. US Patent 2011/0,318,986 A1

  55. Durany A, Anantharamaiah N, Pourdeyhimi B (2009) High surface area nonwovens via fibrillating spunbonded nonwovens comprising Islands-in-the-Sea bicomponent filaments: structure-process-property relationships. J Mater Sci 44:5926–5934. doi:10.1007/s10853-009-3841-9

    Article  Google Scholar 

  56. Grove DA (2012) High dust holding capacity filter media. US Patent 8,142,535

  57. Ferey G (2008) Hybrid porous solids: past, present, future. Chem Soc Rev 37:191–214

    Article  Google Scholar 

  58. Baumann NR, Hagen DF, Hansen PE, Markell CG (1994) Particle-loaded nonwoven fibrous article for separations and purifications. US Patent 5,328,758

  59. Sen AK (2008) Coated textiles: principles and applications. Technomic Pub Co, Lancaster

    Google Scholar 

  60. Qian X, Zheng X, Zhang H, Kang W (2011) The method of producing nanomaterials and melt blown nonwovens composites. Adv in Compos Pts 1 and 2 150–151:667–672

  61. Carbonell RG, DeSimone JM, Novick BJ (2000) Method for meniscus coating with liquid carbon dioxide. US Patent 6,083,565

  62. Carbonell RG, DeSimone JM, Novick BJ (2002) Method for meniscus coating with liquid carbon dioxide. US Patent 6,497,921

  63. Carbonell RG, DeSimone JM, Novick BJ (2003) Method for meniscus coating a substrate with a polymeric precursor. US Patent 6,652,920

  64. Burton SJ, Hammond DJ, Carbonell RG, Shen KZ, Gurgel PV, Wiltshire-Lyerly V (2013) Prion protein binding materials and methods of use. EP No. 1,615,992 B1

  65. Carbonell RG, DeSimone JM, Novick BJ (2003) Apparatus for meniscus coating with liquid carbon dioxide. US Patent 6,517,633

  66. Burton SJ, Carbonell RG, Gurgel PV, Hammond DJ, Shen H, Wiltshire-Lyerly V (2009) Prion protein binding materials and methods of use. US Patent 7,510,848

  67. Dallas AJ, Ding WL, Joriman JD, Zastera D, Giertz JR, Kalayci VE, Chung HY (2014) Web comprising fine fiber and reactive, adsorptive or absorptive particulate. US Patent 8,753,438

  68. Khajavi R, Bahadoran MMS, Bahador A, Khosravi A (2013) Removal of microbes and air pollutants passing through nonwoven polypropylene filters by activated carbon and nanosilver colloidal layers. J Ind Text 42:219–230

    Article  Google Scholar 

  69. Quincy RB (2012) Activated carbon substrates. US Patent 8,168,852 B2

  70. Pontius HT (1985) Cellulose fibers, synthetic fibers, activated carbon. US Patent 4,504,290

  71. Jeong SH, Hwang YH, Yi SC (2005) Antibacterial properties of padded PP/PE nonwovens incorporating nano-sized silver colloids. J Mater Sci 40:5413–5418. doi:10.1007/s10853-005-4340-2

    Article  Google Scholar 

  72. Chen SX, Liu JR, Zeng HM (2005) Structure and antibacterial activity of silver-supporting activated carbon fibers. J Mater Sci 40:6223–6231. doi:10.1007/s10853-005-3149-3

    Article  Google Scholar 

  73. Karacan I, Soy T (2013) Structure and properties of oxidatively stabilized viscose rayon fibers impregnated with boric acid and phosphoric acid prior to carbonization and activation steps. J Mater Sci 48:2009–2021. doi:10.1007/s10853-012-6970-5

    Article  Google Scholar 

  74. Singh B, Suryanarayana M, Baronia S, Rao N, Tripathi V, Lal D, Sen A (2000) Evaluation of chemical protective clothing: a comparative study of breakthrough times with sulphur mustard and a simulant, 1,3-dichloropropane. Def Sci J 50:51–57

    Article  Google Scholar 

  75. Graver Technologies (2012) PLEKX filtration products. http://www.gravertech.com/PDF/Product_Sheets/AGF/Graver_PLEKX_Series.pdf

  76. Koslow EE, Walters Jr LS (2007) Composite for removing moisture, liquid and odors with anti-microbial capability. US Patent 7,238,403

  77. Wei Q, Mao X, Hou D, Ye H, Huang F (2008) Characterization of nonwoven material functionalized by sputter coating of copper. Surf Coat Technol 202:2535–2539

    Article  Google Scholar 

  78. Davis WT, Hood CC, Dever M (1995) Analysis of a thin activated carbon loaded adsorption medium. Sep Sci Technol 30:1309–1324

    Article  Google Scholar 

  79. Dever M, Davis W, Hood C (1994) Development of an activated carbon loaded melt blown spunbond laminate. Tappi J 77:207–214

    Google Scholar 

  80. Mann-Hummel (2013) Foams coated with activated carbon. https://www.mann-hummel.com/fileadmin/user_upload/service/catalogues/pdf/MH_ActivatedCarbonFilters_en.pdf

  81. Gibson P, Schreuder-Gibson H, Rivin D (2001) Transport properties of porous membranes based on electrospun nanofibers. Colloid Surf A-Physicochem Eng Asp 187:469–481

    Article  Google Scholar 

  82. Huang P, Peng C, Su C, Wang C (2004) A new filter media of nonwoven composite with activated carbon fibers. J Adv Mater 36:35–38

    Google Scholar 

  83. Kishkovich O, Rezuke RW, Kinkead D (2006) Filters employing porous strongly acidic polymers. US Patent 7,022,164 B2

  84. Freiherr VKH, Von BH (2007) Odour absorbing clothing and its application. EP No 1,856,996 A1

  85. Dyrud JF, Johnson EJ, Kinzer KE, McAllister JW, Mrozinski JS (1990) Particle-filled microporous materials. US Patent 4,957,943

  86. Coplan MJ, Lopatin G, Walton Jr JP (1985) Thermally plastifiable compositions for microporous sorbent structure. US Patent 4,550,123

  87. Coplan MJ, Lopatin G, Walton Jr JP (1982) Open-celled microporous sorbent-loaded textile fibers and films and methods of fabricating same. US Patent 4,342,811

  88. Leung WW (2012) Nanofiber filter facemasks and cabin filters. US Patent 8,303,693

  89. Dyrud JF, Krueger DL (1988) Respirator comprised of blown bicomponent fibers. US Patent 4,729,371 A

  90. Brochocka A, Majchrzycka K (2009) Technology for the production of bioactive melt-blown filtration materials applied to respiratory protective devices. Fibres Text East Eur 17:92–98

    Google Scholar 

  91. Turkevich LA (2005) Ferroelectric fibers and applications therefor. US Patent 6,858,551

  92. Krucinska I, Surma B, Chrzanowski M, Skrzetuska E, Puchalski M (2013) Application of melt-blown technology for the manufacture of temperature-sensitive nonwoven fabrics composed of polymer blends PP/PCL loaded with multiwall carbon nanotubes. J Appl Polym Sci 127:869–878

    Article  Google Scholar 

  93. Zhong J, Isayev AI (2015) Properties of polyetherimide/graphite composites prepared using ultrasonic twin-screw extrusion. J Appl Polym Sci 132:41397

    Google Scholar 

  94. Ghosh K, Maiti SN (1997) Melt rheological properties of silver-powder-filled polypropylene composites. Polym Plast Technol Eng 36:703–722

    Article  Google Scholar 

  95. Chhaparwal S (2005) Fiber surface modification by particle coating. M.Sc., North Caroline State University, Nonwoven Cooperative Research Center

  96. Cho JW, Paul DR (2001) Nylon 6 nanocomposites by melt compounding. Polymer 42:1083–1094

    Article  Google Scholar 

  97. Tung J, Gupta RK, Simon GP, Edward GH, Bhattacharya SN (2005) Rheological and mechanical comparative study of in situ polymerized and melt-blended nylon 6 nanocomposites. Polymer 46:10405–10418

    Article  Google Scholar 

  98. Wang M, Wang W, Liu T, Zhang W (2008) Melt rheological properties of nylon 6/multi-walled carbon nanotube composites. Compos Sci Technol 68:2498–2502

    Article  Google Scholar 

  99. Ting C, Wang X, Huang X (2005) Effects of processing parameters on the fiber diameter of melt blown nonwoven fabrics. Text Res J 75:76–80

    Article  Google Scholar 

  100. Duran D, Perincek S (2010) The effect of various production parameters on the physical properties of polypropylene meltblown nonwovens. Ind Text 61:117–123

    Google Scholar 

  101. Hassan MA, Yeom BY, Wilkie A, Pourdeyhimi B, Khan SA (2013) Fabrication of nanofiber meltblown membranes and their filtration properties. J Membr Sci 427:336–344

    Article  Google Scholar 

  102. Uppal R, Bhat G, Eash C, Akato K (2013) Meltblown nanofiber media for enhanced quality factor. Fiber Polym 14:660–668

    Article  Google Scholar 

  103. Puch F, Hopmann C (2014) Nylon 6/multiwalled carbon nanotube composites: effect of the melt-compounding conditions and nanotube content on the morphology, mechanical properties, and rheology. J Appl Polym Sci 131:40893

    Article  Google Scholar 

  104. Mahyoedin Y, Sahari J, Mukhtar A, Mohammad N (2011) Effect of carbon black addition on the rheology properties of electrically conductive pp-graphite composite. Fundam Chem Eng Pts 1–3(233–235):3057–3063

    Google Scholar 

  105. Randall AM, Robertson CG (2014) Linear-nonlinear dichotomy of the rheological response of particle-filled polymers. J Appl Polym Sci 131:40818

    Article  Google Scholar 

  106. Jeong SH, Yeo SY, Yi SC (2005) The effect of filler particle size on the antibacterial properties of compounded polymer/silver fibers. J Mater Sci 40:5407–5411. doi:10.1007/s10853-005-4339-8

    Article  Google Scholar 

  107. Gawish SM, Avci H, Ramadan AM, Mosleh S, Monticello R, Breidt F, Kotek R (2012) Properties of antibacterial polypropylene/nanometal composite fibers. J Biomater Sci Polym Edn 23:43–61

    Article  Google Scholar 

  108. Radetic M (2013) Functionalization of textile materials with silver nanoparticles. J Mater Sci 48:95–107. doi:10.1007/s10853-012-6677-7

    Article  Google Scholar 

  109. Ellison CJ, Phatak A, Giles DW, Macosko CW, Bates FS (2007) Melt blown nanofibers: fiber diameter distributions and onset of fiber breakup. Polymer 48:3306–3316

    Article  Google Scholar 

  110. Nakamura T, Hasegawa S, Kato K (2005) Process and apparatus for manufacturing fiber and fiber sheet carrying solid particles and fiber and fiber sheet carrying solid particles. US Patent 6,863,921

  111. Nakamura T, Hasegawa S, Kato K (2008) Process and apparatus for manufacturing fiber and fiber sheet carrying solid particles. US Patent 2008/0,083,369 A1

  112. Czaplicki Z (2006) A new method and equipment for manufacturing new adsorptive materials with active carbon content. Fibres Text Eastern Eur 14:75–78

    Google Scholar 

  113. Permatron I (2013) Activated carbon air filter media for odor/fume removal. http://www.permatron.com/products/filter-media/activated-carbon-media.aspx

  114. Dasdemir M, Maze B, Anantharamaiah N, Pourdeyhimi B (2011) Formation of novel thermoplastic composites using bicomponent nonwovens as a precursor. J Mater Sci 46:3269–3281. doi:10.1007/s10853-010-5214-9

    Article  Google Scholar 

  115. Dasdemir M, Maze B, Anantharamaiah N, Pourdeyhimi B (2012) Influence of polymer type, composition, and interface on the structural and mechanical properties of core/sheath type bicomponent nonwoven fibers. J Mater Sci 47:5955–5969. doi:10.1007/s10853-012-6499-7

    Article  Google Scholar 

  116. Böhringer B, De RE, KÄMPER S, Moskopp M, Ouvry L, Vodak DlH (2004) Adsorbing filter material with high adsorption capacity and low breakthrough property. EP No 1,468,732 A2

  117. Felton CD, Groeger HG, Serad GA (1996) Fibrous structures containing immobilized particulate matter. US Patent 5,486,410 A

  118. Fenton CD, Groeger HG, Serad GA (1997) Process for fibrous structure containing immobilized particulate matter. US Patent 5,674,339 A

  119. Felton CD, Gregory DH, Serad GA (2000) Process for fibrous structure containing immobilized particulate matter. US Patent 6,024,813 A

  120. Blücher Hv, Ouvry L, Kämper S, Moskopp M, Ruiter Ed, Böhringer B (2007) Adsorption filter material with high adsorption capacity and low breakthrough behavior. US Patent 7,160,369 B2

  121. Wilfong DE, Xiao W, Thompson GJ, Sturm RC (2010) VOC-absorbing nonwoven composites. US Patent 7,825,050 B2

  122. Samejima T (1979) Adsorptive nonwoven fabric comprising fused fibers, non-fused fibers and absorptive material and method of making same. US Patent 4,160,059

  123. Groeger HG (1997) Particulate filter structure. US Patent 5,662,728 A

  124. Yeom BY, Pourdeyhimi B (2011) Aerosol filtration properties of PA6/PE islands-in-the-sea bicomponent spunbond web fibrillated by high-pressure water jets. J Mater Sci 46:5761–5767. doi:10.1007/s10853-011-5531-7

    Article  Google Scholar 

  125. Koslow EE (2003) Composite filter medium and fluid filters containing same. US Patent 6,550,622 B2

  126. Fane AG, Schäfer AI, Waite TD (2005) Nanofiltration : principles and applications. Elsevier, New York

    Google Scholar 

  127. Koslow EE (2005) Integrated paper comprising fibrillated fibers and active particles immobilized therein. WO Patent 2005/035,866 A2

  128. KX Technologies L (2011) PLEKX—the amazing filter medium. http://www.rosmosis.com/files/PLEKX.pdf

  129. Douglas AV, Morgan BD, Sprang TA (1996) Adsorbent fibrous nonwoven composite structure. US Patent 5,571,604 A

  130. Montefusco A (2005) The use of Nonwovens in air filtration. Filtr Sep 42:30–31

    Article  Google Scholar 

  131. Heagle DG, Hiers JJ (1993) Blood filter and method of filtration. US Patent 5,190,657

  132. Koslow EE (2005) Microporous filter media, filtration systems containing same, and methods of making and using. US Patent 6,959,820 B2

  133. TriniTex A (2010) Activated carbon filter media. http://www.ahlstrom.com/en/products/fiberComposites/Documents/Air%20Filtration%20documents/HVAC_activated%20carbon_2.2010.pdf

  134. KX Technologies L (2010) KX—FACT—fibrillated adsorbent cellulose technology. http://www.environmental-expert.com/products/kx-fact-fibrillated-adsorbent-cellulose-technology-259971

  135. Giglia RD, Battistelli EA (1986) Non-woven activated carbon fabric. US Patent 4,565,727 A

  136. Giglia RD, Battistelli E (1987) Non-woven activated carbon fabric. EP No 0,144,553 B1

  137. Giglia RD, Battistelli E (1990) Non-woven activated carbon fabric. US Patent 4,904,343 A

  138. Koslow EE (2010) Integrated paper comprising fibrillated fibers and active particles immobilized therein. US Patent 7,655,112

  139. Sterling Fibers (2011) CFF acrylic pulps/fibrillated fibers for wet-laid/slurry processes. http://www.sterlingfibers.com/_doc/CFF_Acrylic_Pulps_and_Fibrillated_Fibers_for_Wet_Laid_and_Slurry_Processes_0.pdf

  140. Lorimier C, Le Coq L, Subrenat A, Le Cloirec P (2008) Indoor air particulate filtration onto activated carbon fiber media. J Environ Eng ASCE 134:126–137

    Article  Google Scholar 

  141. Schoenecker PM, Carson CG, Walton KS (2011) Structural stability of Metal-Organic Frameworks under humid conditions. Abstr Pap Am Chem Soc 242:201786

  142. Jasuja H, Huang Y, Walton KS (2012) Adjusting the stability of metal-organic frameworks under humid conditions by ligand functionalization. Langmuir 28:16874–16880

    Article  Google Scholar 

  143. Jasuja H, Walton KS (2012) Effect of ligand functionalization on the stability of DABCO based pillared MOFs under humid conditions. Abstr Pap Am Chem Soc 243:219JX

  144. Schoenecker PM, Carson CG, Jasuja H, Flemming CJJ, Walton KS (2012) Effect of water adsorption on retention of structure and surface area of metal-organic frameworks. Ind Eng Chem Res 51:6513–6519

    Article  Google Scholar 

  145. Jasuja H, Burtch NC, Huang Y, Cai Y, Walton KS (2013) Kinetic water stability of an isostructural family of zinc-based pillared metal-organic frameworks. Langmuir 29:633–642

    Article  Google Scholar 

  146. Han S, Huang Y, Watanabe T, Nair S, Walton KS, Sholl DS, Carson Meredith J (2013) MOF stability and gas adsorption as a function of exposure to water, humid air, SO2, and NO2. Microporous Mesoporous Mater 173:86–91

    Article  Google Scholar 

  147. Jasuja H, Walton KS (2013) Effect of catenation and basicity of pillared ligands on the water stability of MOFs. Dalton Trans 42:15421–15426

    Article  Google Scholar 

  148. Abbasi AR, Akhbari K, Morsali A (2012) Dense coating of surface mounted CuBTC metal-organic framework nanostructures on silk fibers, prepared by layer-by-layer method under ultrasound irradiation with antibacterial activity. Ultrason Sonochem 19:846–852

    Article  Google Scholar 

  149. Scherb C, Williams JJ, Hinterholzinger F, Bauer S, Stock N, Bein T (2011) Implementing chemical functionality into oriented films of metal-organic frameworks on self-assembled monolayers. J Mater Chem 21:14849–14856

    Article  Google Scholar 

  150. Shah M, McCarthy MC, Sachdeva S, Lee AK, Jeong H (2012) Current status of metal-organic framework membranes for gas separations: promises and challenges. Ind Eng Chem Res 51:2179–2199

    Article  Google Scholar 

  151. Hu B, Fugetsu B, Yu H, Abe Y (2012) Prussian blue caged in spongiform adsorbents using diatomite and carbon nanotubes for elimination of cesium. J Hazard Mater 217–218:85–91

    Google Scholar 

  152. Pinto MdS, Augusto Sierra-Avila C, Hinestroza JP (2012) In situ synthesis of a Cu-BTC metal-organic framework (MOF 199) onto cellulosic fibrous substrates: cotton. Cellulose 19:1771–1779

    Article  Google Scholar 

  153. Stock N, Biswas S (2012) Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites. Chem Rev 112:933–969

    Article  Google Scholar 

  154. Shah MN, Gonzalez MA, McCarthy MC, Jeong H (2013) An unconventional rapid synthesis of high performance metal-organic framework membranes. Langmuir ACS J Surf Colloids 29:7896–7902

    Article  Google Scholar 

  155. Kwon HT, Jeong H (2013) In Situ synthesis of thin zeolitic-imidazolate framework ZIF-8 membranes exhibiting exceptionally high propylene/propane separation. J Am Chem Soc 135:10763–10768

    Article  Google Scholar 

  156. Liu Y, Ng Z, Khan EA, Jeong H, Ching C, Lai Z (2009) Synthesis of continuous MOF-5 membranes on porous alpha-alumina substrates. Microporous Mesoporous Mater 118:296–301

    Article  Google Scholar 

  157. Aguado S, Nicolas C, Moizan-Basle V, Nieto C, Amrouche H, Bats N, Audebrand N et al (2011) Facile synthesis of an ultramicroporous MOF tubular membrane with selectivity towards CO2. New J Chem 35:41–44

    Article  Google Scholar 

  158. Cao F, Zhang C, Xiao Y, Huang H, Zhang W, Liu D, Zhong C et al (2012) Helium recovery by a Cu-BTC metal-organic-framework membrane. Ind Eng Chem Res 51:11274–11278

    Article  Google Scholar 

  159. Nagaraju D, Bhagat DG, Banerjee R, Kharul UK (2013) In situ growth of metal-organic frameworks on a porous ultrafiltration membrane for gas separation. J Mater Chem A 1:8828–8835

    Article  Google Scholar 

  160. Caro J (2011) Are MOF membranes better in gas separation than those made of zeolites? Curr Opin Chem Eng 1:77–83

    Article  Google Scholar 

  161. Meilikhov M, Yusenko K, Schollmeyer E, Mayer C, Buschmann H, Fischer RA (2011) Stepwise deposition of metal organic frameworks on flexible synthetic polymer surfaces. Dalton Trans 40:4838–4841

    Article  Google Scholar 

  162. Hasanzadeh M, Moghadam BH (2013) Polymer products and chemical processes: techniques, analysis, and applications. In: Anonymous potential applications of metal-organic frameworks in textiles. CRC Press, p 239

  163. Kuesgens P, Siegle S, Kaskel S (2009) Crystal growth of the metal-organic framework Cu-3(BTC)(2) on the surface of pulp fibers. Adv Eng Mater 11:93–95

    Article  Google Scholar 

  164. Centrone A, Yang Y, Speakman S, Bromberg L, Rutledge GC, Hatton TA (2010) Growth of metal-organic frameworks on polymer surfaces. J Am Chem Soc 132:15687–15691

    Article  Google Scholar 

  165. Pinto MdS, Avilla CAS, Hinestroza JP (2013) Metal organic framework modified materials, methods of making and methods of using same. US Patent 2013/0,274,087 A1

  166. Fan L, Xue M, Kang Z, Li H, Qiu S (2012) Electrospinning technology applied in zeolitic imidazolate framework membrane synthesis. J Mater Chem 22:25272–25276

    Article  Google Scholar 

  167. Yao J, Dong D, Li D, He L, Xu G, Wang H (2011) Contra-diffusion synthesis of ZIF-8 films on a polymer substrate. Chem Commun 47:2559–2561

    Article  Google Scholar 

  168. Pan Y, Wang B, Lai Z (2012) Synthesis of ceramic hollow fiber supported zeolitic imidazolate framework-8 (ZIF-8) membranes with high hydrogen permeability. J Membr Sci 421–422:292–298

    Article  Google Scholar 

  169. Feng CY, Khulbe KC, Matsuura T, Ismail AF (2013) Recent progresses in polymeric hollow fiber membrane preparation, characterization and applications. Sep Purif Technol 111:43–71

    Article  Google Scholar 

  170. Xu G, Yao J, Wang K, He L, Webley PA, Chen C, Wang H (2011) Preparation of ZIF-8 membranes supported on ceramic hollow fibers from a concentrated synthesis gel. J Membr Sci 385–386:187–193

    Article  Google Scholar 

  171. Cui X, Gu Z, Jiang D, Li Y, Wang H, Yan X (2009) In situ hydrothermal growth of metal-organic framework 199 films on stainless steel fibers for solid-phase microextraction of gaseous benzene homologues. Anal Chem 81:9771–9777

    Article  Google Scholar 

  172. Gu Z, Yang C, Chang N, Yan X (2012) Metal-organic frameworks for analytical chemistry: from sample collection to chromatographic separation. Acc Chem Res 45:734–745

    Article  Google Scholar 

  173. Rallapalli PBS, Raj MC, Patil DV, Prasanth KP, Somani RS, Bajaj HC (2013) Activated carbon @ MIL-101(Cr): a potential metal-organic framework composite material for hydrogen storage. Int J Energy Res 37:746–753

    Article  Google Scholar 

  174. Pachfule P, Balan BK, Kurungot S, Banerjee R (2012) One-dimensional confinement of a nanosized metal organic framework in carbon nanofibers for improved gas adsorption. Chem Commun 48:2009–2011

    Article  Google Scholar 

  175. Prasanth KP, Rallapalli P, Raj MC, Bajaj HC, Jasra RV (2011) Enhanced hydrogen sorption in single walled carbon nanotube incorporated MIL-101 composite metal-organic framework. Int J Hydrogen Energy 36:7594–7601

    Article  Google Scholar 

  176. Shi L, Liang R, Qiu J (2012) Controllable deposition of platinum nanoparticles on polyaniline-functionalized carbon nanotubes. J Mater Chem 22:17196–17203

    Article  Google Scholar 

  177. Dumee L, He L, Hill M, Zhu B, Duke M, Schuetz J, She F et al (2013) Seeded growth of ZIF-8 on the surface of carbon nanotubes towards self-supporting gas separation membranes. J Mater Chem A 1:9208–9214

    Article  Google Scholar 

  178. Yang SJ, Choi JY, Chae HK, Cho JH, Nahm KS, Park CR (2009) Preparation and enhanced hydrostability and hydrogen storage capacity of CNT@MOF-5 hybrid composite. Chem Mater 21:1893–1897

    Article  Google Scholar 

  179. Yang SJ, Cho JH, Nahm KS, Park CR (2010) Enhanced hydrogen storage capacity of Pt-loaded CNT@MOF-5 hybrid composites. Int J Hydrog Energy 35:13062–13067

    Article  Google Scholar 

  180. Anbia M, Sheykhi S (2013) Preparation of multi-walled carbon nanotube incorporated MIL-53-Cu composite metal–organic framework with enhanced methane sorption. J Ind Eng Chem 19:1583–1586

    Article  Google Scholar 

  181. Zhou F, Liu Q, Zhang W, Gu J, Zhu S, Zhang D (2014) Fabrication of 3D carbon nanotube/porous carbon hybrid materials. J Mater Sci 49:548–557. doi:10.1007/s10853-013-7734-6

    Article  Google Scholar 

  182. Fraczek-Szczypta A, Bogun M, Blazewicz S (2009) Carbon fibers modified with carbon nanotubes. J Mater Sci 44:4721–4727. doi:10.1007/s10853-009-3730-2

    Article  Google Scholar 

  183. Teng F, Zhang G, Wang Y, Gao C, Zhang Z, Xie E (2015) Photocatalytic properties of titania/porous carbon fibers composites prepared by self-template method. J Mater Sci 50:2921–2931. doi:10.1007/s10853-015-8857-8

    Google Scholar 

  184. Miyama T, Yonezawa Y (2004) Aggregation of photolytic gold nanoparticles at the surface of chitosan films. Langmuir 20:5918–5923

    Article  Google Scholar 

  185. de Moura MR, Mattoso LHC, Zucolotto V (2012) Development of cellulose-based bactericidal nanocomposites containing silver nanoparticles and their use as active food packaging. J Food Eng 109:520–524

    Article  Google Scholar 

  186. Llorens A, Lloret E, Picouet PA, Trbojevich R, Fernandez A (2012) Metallic-based micro and nanocomposites in food contact materials and active food packaging. Trends Food Sci Technol 24:19–29

    Article  Google Scholar 

  187. Boufi S, Vilar MR, Ferraria AM, Botelho do Rego AM (2013) In situ photochemical generation of silver and gold nanoparticles on chitosan. Colloids Surf Physicochem Eng Aspects 439:151–158

    Article  Google Scholar 

  188. Amid H, Nosraty H, Maleki V (2010) Effects of nano-silver finishing on the physical and mechanical properties of cotton fabrics. In: 7th international conference-TEXSCI 2010, Liberec, Czech Republic

  189. Amid H, Nosraty H, Maleki V (2011) Experimental study on the effects of nano-silver finishing on physical and mechanical properties of cotton fabrics. SMARTEX-2011 World Textiles Conference, Kafrelsheikh University, Egypt

  190. Amid H, Nosraty H, Maleki V (2015) Physical and mechanical properties of woven cotton fabrics after nanosilver finishing. BAOJ Nanotechnol 1:001–007

  191. Wu Y, Li F, Liu H, Zhu W, Teng M, Jiang Y, Li W et al (2012) Electrospun fibrous mats as skeletons to produce free-standing MOF membranes. J Mater Chem 22:16971–16978

    Article  Google Scholar 

  192. Brooker RW, Cohen B, Jackson DM (1989) Active particle-containing nonwoven material, method of formation thereof, and uses thereof. US Patent 4,797,318

  193. Braun DL (1976) Particle-loaded microfiber sheet product and respirators made therefrom. US Patent 3,971,373

  194. Brooker RW, Cohen B, Jackson DM (1989) Active particle-containing nonwoven material, method of formation thereof, and uses thereof. US Patent 4,797,318 A

  195. Georger WA, Jones MF, Kopacz TJ, Zelazoski GA (1994) Abrasion resistant fibrous nonwoven composite structure. US Patent 5,350,624 A

  196. Eian GL (1984) Reduced-stress vapor-sorptive garments. US Patent 4,433,024

  197. McCulloch WJG (1999) The history of the development of melt blowing technology. In: Tappi nonwovens conference, pp 109–121

  198. Frazier N, Harris C, Keck L (2003) Three-dimensional coform nonwoven web. US Patent 2003/0,211,802 A1

  199. Jackson DM, Schmidt MA (2009) Coform nonwoven web formed from propylene/alpha-olefin meltblown fibers. US Patent 2009/0,233,049

  200. Nowicka C (2003) Composite nonwovens: the bonding durability of sorbent particles. Fibres Text East Eur 11:46–49

    Google Scholar 

  201. Gaynor M, McManus J (2004) Spunbonded/meltblown/spunbonded laminate face mask. US Patent 2004/0,000,313 A1

  202. Goddard WA (2007) Handbook of nanoscience, engineering, and technology. CRC Press, Boca Raton, FL

    Google Scholar 

  203. Tascan M, Gaffney KL (2012) Effect of glass-beads on sound insulation properties of nonwoven fabrics. J Eng Fibers Fabr 7:101–105

    Google Scholar 

  204. Boney LC, Haynes BD, Lake MB (2006) Process of making a nonwoven web. US Patent 6,989,125

  205. Fish JE, Lau JC, Haynes BD (2001) Die head assembly, apparatus, and process for meltblowing a fiberforming thermoplastic polymer. US Patent 6,200,120

  206. Haynes BD, McManus JL, Busby R (1999) Coflowing cold air and hot air in melt blowing nozzle; prevents premature quenching. US Patent 6,001,303

  207. Haynes BD, Clark D, Lake M (2002) Breaker plate assembly for producing bicomponent fibers in a meltblown apparatus. US Patent 6,474,967

  208. Haynes BD, Cook MC (2006) Die for producing meltblown multicomponent fibers and meltblown nonwoven fabrics. US Patent 7,150,616

  209. Haynes BD, McManus JL, Duellman JM, Clark DF, Quincy III RB (2003) Method of increasing the meltblown jet thermal core length via hot air entrainment. US Patent 6,613,268

  210. Haynes BD, Lake MB, Rhim H (2004) Process of and apparatus for making a nonwoven web. US Patent 6,709,623

  211. Lake M, Clark D, Haynes BD (2002) Breaker plate assembly for producing bicomponent fibers in a meltblown apparatus. US Patent 6,461,133

  212. Mayer E, Lim HS (1989) New nonwoven microfiltration membrane material. Fluid/Part Sep J 2:17–21

    Google Scholar 

  213. Mitchler PA, Riddell WE, Baker CA (2002) Particle-containing meltblown webs. US Patent 6,417,120 B1

  214. Riddell WE (2002) Method of forming meltblown webs containing particles. US Patent 6,494,974 B2

  215. Ward G (2005) Nanofibres: media at the nanoscale. Filtration Sep 42:22–24

    Article  Google Scholar 

  216. Podgorski A, Balazy A, Gradon L (2006) Application of nanofibers to improve the filtration efficiency of the most penetrating aerosol particles in fibrous filters. Chem Eng Sci 61:6804–6815

    Article  Google Scholar 

  217. Greiner A, Wendorff J (2007) Electrospinning: a fascinating method for the preparation of ultrathin fibers. Angew Chem Int Ed 46:5670–5703

    Article  Google Scholar 

  218. Grafe T, Graham K (2002) Polymeric nanofibers and nanofiber webs: a new class of nonwovens. Presented at INTC 2002: International Nonwovens Technical Conference (Joint INDA—TAPPI Conference), Atlanta, Georgia

  219. Kosmider K, Scott J (2002) Polymeric nanofibres exhibit an enhanced air filtration performance. Filtration Sep 39:20–22

    Article  Google Scholar 

  220. Grafe T, Graham K (2003) Nanofiber webs from electrospinning. In: Nonwovens in filtration—fifth international conference, Stuttgart, Germany

  221. Park HS, Park YO (2005) Filtration properties of electrospun utrafine fiber webs. Korean J Chem Eng 22:165–172

    Article  Google Scholar 

  222. Park SH, Kim C, Jeong YI, Lim DY, Lee YE, Yang KS (2004) Activation behaviors of isotropic pitch-based carbon fibers from electrospinning and meltspinning. Synth Met 146:207–212

    Article  Google Scholar 

  223. Madhugiri S, Dalton A, Gutierrez J, Ferraris JP, Balkus KJ (2003) Electrospun MEH-PPV/SBA-15 composite nanofibers using a dual syringe method. J Am Chem Soc 125:14531–14538

    Article  Google Scholar 

  224. Zhan S, Chen D, Jiao X, Song Y (2007) Mesoporous TiO2/SiO2 composite nanofibers with selective photocatalytic properties. Chem Commun 20:2043–2045

    Article  Google Scholar 

  225. Wu Y, Balakrishna R, Reddy MV, Nair AS, Chowdari BVR, Ramakrishna S (2012) Functional properties of electrospun NiO/RuO2 composite carbon nanofibers. J Alloys Compounds 517:69–74

    Article  Google Scholar 

  226. Luo CJ, Stoyanov SD, Stride E, Pelan E, Edirisinghe M (2012) Electrospinning versus fibre production methods: from specifics to technological convergence. Chem Soc Rev 41:4708–4735

    Article  Google Scholar 

  227. Agarwal S, Greiner A, Wendorff JH (2013) Functional materials by electrospinning of polymers. Prog Polym Sci 38:963–991

    Article  Google Scholar 

  228. Haji A, Nasouri K, Shoushtari AM, Kaflou A (2013) Reversible hydrogen storage in electrospun composite nanofibers. In: Proceedings of the international conference nanomaterials: applications and properties

  229. Ramakrishna S (2005) An introduction to electrospinning and nanofibers. World Scientific, Singapore

    Book  Google Scholar 

  230. Di J, Zhao Y, Yu J (2011) Fabrication of molecular sieve fibers by electrospinning. J Mater Chem 21:8511–8520

    Article  Google Scholar 

  231. Greiner A, Wendorff JH (2008) Functional self-assembled nanofibers by electrospinning. Self-Assem Nanomater I Nanofibers 219:107–171

    Article  Google Scholar 

  232. Ramakrishna S, Jose R, Archana PS, Nair AS, Balamurugan R, Venugopal J, Teo WE (2010) Science and engineering of electrospun nanofibers for advances in clean energy, water filtration, and regenerative medicine. J Mater Sci 45:6283–6312. doi:10.1007/s10853-010-4509-1

    Article  Google Scholar 

  233. Kaur S, Sundarrajan S, Rana D, Sridhar R, Gopal R, Matsuura T, Ramakrishna S (2014) Review: the characterization of electrospun nanofibrous liquid filtration membranes. J Mater Sci 49:6143–6159. doi:10.1007/s10853-014-8308-y

    Article  Google Scholar 

  234. Patil SA, Chigome S, Hagerhall C, Torto N, Gorton L (2013) Electrospun carbon nanofibers from polyacrylonitrile blended with activated or graphitized carbonaceous materials for improving anodic bioelectrocatalysis. Bioresour Technol 132:121–126

    Article  Google Scholar 

  235. Gliscinska E, Babel K (2013) Preparation of activated carbon fibres from electrospun polyacrylonitrile fibre mat and characterisation of their chemical and structural properties. Fibres Text Eastern Eur 21:42–47

    Google Scholar 

  236. Im JS, Kang SC, Lee S, Lee Y (2010) Improved gas sensing of electrospun carbon fibers based on pore structure, conductivity and surface modification. Carbon 48:2573–2581

    Article  Google Scholar 

  237. Liu C, Lai K, Liu W, Yao M, Sun R (2009) Preparation of carbon nanofibres through electrospinning and thermal treatment. Polym Int 58:1341–1349

    Article  Google Scholar 

  238. Liu W, Adanur S (2010) Properties of electrospun polyacrylonitrile membranes and chemically-activated carbon nanofibers. Text Res J 80:124–134

    Article  Google Scholar 

  239. Im JS, Park S, Lee Y (2007) Preparation and characteristics of electrospun activated carbon materials having meso- and macropores. J Colloid Interface Sci 314:32–37

    Article  Google Scholar 

  240. He S, Chen L, Xie C, Hu H, Chen S, Hanif M, Hou H (2013) Supercapacitors based on 3D network of activated carbon nanowhiskers wrapped-on graphitized electrospun nanofibers. J Power Sour 243:880–886

    Article  Google Scholar 

  241. Sullivan P, Moate J, Stone B, Atkinson JD, Hashisho Z, Rood MJ (2012) Physical and chemical properties of PAN-derived electrospun activated carbon nanofibers and their potential for use as an adsorbent for toxic industrial chemicals. Adsorpt J Int Adsorpt Soc 18:265–274

    Article  Google Scholar 

  242. Kim SY, Kim B, Yang KS, Oshida K (2012) Supercapacitive properties of porous carbon nanofibers via the electrospinning of metal alkoxide-graphene in polyacrylonitrile. Mater Lett 87:157–161

    Article  Google Scholar 

  243. LiLi Fan, Ming Xue, ZiXi Kang, ShiLun Qiu (2013) Synthesis of microporous membranes and films on various substrates by novel electrospinning method. Sci China Chem 56:459–464

    Google Scholar 

  244. Kim HY (2008) Electronic spinning apparatus, and a process of preparing nonwoven fabric using the same. US Patent 7,332,050

  245. Petrik S, Maly M (2009) Production nozzle-less electrospinning nanofiber technology

  246. Pourdeyhimi B, Lommel SA, Honarbakhsh S, Carbonell R, Guenther RH (2013) Biodegradable non-woven fabric having plant virus encapsulated actives for drug delivery. US Patent 8,535,727

  247. Panthi G, Park S, Kim T, Chung H, Hong S, Park M, Kim H (2015) Electrospun composite nanofibers of polyacrylonitrile and Ag2CO3 nanoparticles for visible light photocatalysis and antibacterial applications. J Mater Sci 50:4477–4485. doi:10.1007/s10853-015-8995-z

    Article  Google Scholar 

  248. Ramkumar S, Singh V, Lalagiri M (2011) Filtration efficiency of the composite media prepared by meltblown and electrospun nanofibers. In: Innovative nonwovens conference, NET, Atlanta, Georgia

  249. Rose M, Boehringer B, Jolly M, Fischer R, Kaskel S (2011) MOF processing by electrospinning for functional textiles. Adv Eng Mater 13:356–360

    Article  Google Scholar 

  250. Bui N, Kim B, Yang KS, Dela Cruz ME, Ferraris JP (2009) Activated carbon fibers from electrospinning of polyacrylonitrile/pitch blends. Carbon 47:2538–2539

    Article  Google Scholar 

  251. Lee SK, Im JS, Kang SC, Lee S, Lee Y (2012) Effects of improved porosity and electrical conductivity on pitch-based carbon nanofibers for high-performance gas sensors. J Porous Mater 19:989–994

    Article  Google Scholar 

  252. Lee KJ, Shiratori N, Lee GH, Miyawaki J, Mochida I, Yoon S, Jang J (2010) Activated carbon nanofiber produced from electrospun polyacrylonitrile nanofiber as a highly efficient formaldehyde adsorbent. Carbon 48:4248–4255

    Article  Google Scholar 

  253. Manickam SS, Karra U, Huang L, Bui Nhu-Ngoc, Li B, McCutcheon JR (2013) Activated carbon nanofiber anodes for microbial fuel cells. Carbon 53:19–28

    Article  Google Scholar 

  254. Zhang L, Aboagye A, Kelkar A, Lai C, Fong H (2014) A review: carbon nanofibers from electrospun polyacrylonitrile and their applications. J Mater Sci 49:463–480. doi:10.1007/s10853-013-7705-y

    Article  Google Scholar 

  255. Song X, Wang C, Zhang D (2009) Surface structure and adsorption properties of ultrafine porous carbon fibers. Appl Surf Sci 255:4159–4163

    Article  Google Scholar 

  256. Im JS, Park S, Lee Y (2009) Superior prospect of chemically activated electrospun carbon fibers for hydrogen storage. Mater Res Bull 44:1871–1878

    Article  Google Scholar 

  257. Peng M, Li D, Shen L, Chen Y, Zheng Q, Wang H (2006) Nanoporous structured submicrometer carbon fibers prepared via solution electrospinning of polymer blends. Langmuir 22:9368–9374

    Article  Google Scholar 

  258. Im JS, Jang J, Lee Y (2009) Synthesis and characterization of mesoporous electrospun carbon fibers derived from silica template. J Ind Eng Chem 15:914–918

    Article  Google Scholar 

  259. Zussman E, Yarin A, Bazilevsky A, Avrahami R, Feldman M (2006) Electrospun polyacrylonitrile/poly (methyl methacrylate)-derived turbostratic carbon micro-/nanotubes. Adv Mater 18:348–353

    Article  Google Scholar 

  260. Kim C, Jeong YI, Ngoc BTN, Yang KS, Kojima M, Kim YA, Endo M et al (2007) Synthesis and characterization of porous carbon nanofibers with hollow cores through the thermal treatment of electrospun copolymeric nanofiber webs. Small 3:91–95

    Article  Google Scholar 

  261. Dror Y, Salalha W, Avrahami R, Zussman E, Yarin AL, Dersch R, Greiner A et al (2007) One-step production of polymeric microtubes by co-electrospinning. Small 3:1064–1073

    Article  Google Scholar 

  262. Ghasemi M, Shahgaldi S, Ismail M, Kim BH, Yaakob Z, Wan Daud WR (2011) Activated carbon nanofibers as an alternative cathode catalyst to platinum in a two-chamber microbial fuel cell. Int J Hydrogen Energy 36:13746–13752

    Article  Google Scholar 

  263. Yun J, Im JS, Lee SK, Kim H, Lee Y (2012) A selective drug-release system consisting of surface-modified electrospun carbon fibers by oxy/fluorination. J Porous Mater 19:781–789

    Article  Google Scholar 

  264. Su C, Huang Y, Wong J, Lu C, Wang C (2012) PAN-based carbon nanofiber absorbents prepared using electrospinning. Fibers Polym 13:436–442

    Article  Google Scholar 

  265. Bai Y, Huang Z, Zhang Z, Kang F (2013) Improvement of the hydrophilicity of electrospun porous carbon nanofibers by grafting phenylsulfonic acid groups. J Colloid Interface Sci 394:177–182

    Article  Google Scholar 

  266. Aykut Y, Pourdeyhimi B, Khan SA (2013) Catalytic graphitization and formation of macroporous-activated carbon nanofibers from salt-induced and H2S-treated polyacrylonitrile. J Mater Sci 48:7783–7790. doi:10.1007/s10853-013-7463-x

    Article  Google Scholar 

  267. Seo M, Park S (2009) Electrochemical characteristics of activated carbon nanofiber electrodes for supercapacitors. Mater Sci Eng B 164:106–111

    Article  Google Scholar 

  268. Kim C, Yang KS (2003) Electrochemical properties of carbon nanofiber web as an electrode for supercapacitor prepared by electrospinning. Appl Phys Lett 83:1216–1218

    Article  Google Scholar 

  269. Kim C, Kim JS, Kim SJ, Lee WJ, Yang KS (2004) Supercapacitors prepared from carbon nanofibers electrospun from polybenzimidazol. J Electrochem Soc 151:A769–A773

    Article  Google Scholar 

  270. Kim C, Choi Y, Lee W, Yang K (2004) Supercapacitor performances of activated carbon fiber webs prepared by electrospinning of PMDA-ODA poly(amic acid) solutions. Electrochim Acta 50:883–887

    Article  Google Scholar 

  271. Kim B, Bui N, Yang K, dela Cruz ME, Ferraris JP (2009) Electrochemical properties of activated polyacrylonitrile/pitch carbon fibers produced using electrospinning. Bull Korean Chem Soc 30:1967–1972

    Article  Google Scholar 

  272. Im JS, Woo S, Jung M, Lee Y (2008) Improved capacitance characteristics of electrospun ACFs by pore size control and vanadium catalyst. J Colloid Interface Sci 327:115–119

    Article  Google Scholar 

  273. Kim C (2005) Electrochemical characterization of electrospun activated carbon nanofibres as an electrode in supercapacitors. J Power Sour 142:382–388

    Article  Google Scholar 

  274. Miao J, Miyauchi M, Simmons TJ, Dordick JS, Linhardt RJ (2010) Electrospinning of nanomaterials and applications in electronic components and devices. J Nanosci Nanotechnol 10:5507–5519

    Article  Google Scholar 

  275. Aykut Y (2012) Enhanced field electron emission from electrospun co-loaded activated porous carbon nanofibers. Acs Appl Mater Interfaces 4:3405–3415

    Article  Google Scholar 

  276. Ji L, Zhang X (2009) Generation of activated carbon nanofibers from electrospun polyacrylonitrile-zinc chloride composites for use as anodes in lithium-ion batteries. Electrochem Commun 11:684–687

    Article  Google Scholar 

  277. Im JS, Kwon O, Kim YH, Park S, Lee Y (2008) The effect of embedded vanadium catalyst on activated electrospun CFs for hydrogen storage. Microporous Mesoporous Mater 115:514–521

    Article  Google Scholar 

  278. Im JS, Park S, Kim TJ, Kim YH, Lee Y (2008) The study of controlling pore size on electrospun carbon nanofibers for hydrogen adsorption. J Colloid Interface Sci 318:42–49

    Article  Google Scholar 

  279. Im JS, Jung MJ, Lee Y (2009) Effects of fluorination modification on pore size controlled electrospun activated carbon fibers for high capacity methane storage. J Colloid Interface Sci 339:31–35

    Article  Google Scholar 

  280. Sullivan PD, Stone BR, Hashisho Z, Rood MJ (2007) Water adsorption with hysteresis effect onto microporous activated carbon fabrics. Adsorpt J Int Adsorpt Soc 13:173–189

    Article  Google Scholar 

  281. Katepalli H, Bikshapathi M, Sharma CS, Verma N, Sharma A (2011) Synthesis of hierarchical fabrics by electrospinning of PAN nanofibers on activated carbon microfibers for environmental remediation applications. Chem Eng J 171:1194–1200

    Article  Google Scholar 

  282. Teng M, Qiao J, Li F, Bera PK (2012) Electrospun mesoporous carbon nanofibers produced from phenolic resin and their use in the adsorption of large dye molecules. Carbon 50:2877–2886

    Article  Google Scholar 

  283. Oh G, Ju Y, Kim M, Jung H, Kim HJ, Lee W (2008) Adsorption of toluene on carbon nanofibers prepared by electrospinning. Sci Total Environ 393:341–347

    Article  Google Scholar 

  284. Shim WG, Kim C, Lee JW, Yun JJ, Jeong YI, Moon H, Yang KS (2006) Adsorption characteristics of benzene on electrospun-derived porous carbon nanofibers. J Appl Polym Sci 102:2454–2462

    Article  Google Scholar 

  285. Ji L, Medford AJ, Zhang X (2009) Fabrication of carbon fibers with nanoporous morphologies from electrospun polyacrylonitrile/poly(L-lactide) blends. J Polym Sci B Poly Phys 47:493–503

    Article  Google Scholar 

  286. Ren T, Si Y, Yang J, Ding B, Yang X, Hong F, Yu J (2012) Polyacrylonitrile/polybenzoxazine-based Fe3O4@carbon nanofibers: hierarchical porous structure and magnetic adsorption property. J Mater Chem 22:15919–15927

    Article  Google Scholar 

  287. Ko F, Gogotsi Y, Ali A, Naguib N, Ye H, Yang GL, Li C et al (2003) Electrospinning of continuous carbon nanotube-filled nanofiber yarns. Adv Mater 15:1161–1165

    Article  Google Scholar 

  288. Prilutsky S, Zussman E, Cohen Y (2008) The effect of embedded carbon nanotubes on the morphological evolution during the carbonization of poly(acrylonitrile) nanofibers. Nanotechnology 19:165603–165612

    Article  Google Scholar 

  289. Ra EJ, An KH, Kim KK, Jeong SY, Lee YH (2005) Anisotropic electrical conductivity of MWCNT/PAN nanofiber paper. Chem Phys Lett 413:188–193

    Article  Google Scholar 

  290. Chakrabarti K, Nambissan PMG, Mukherjee CD, Bardhan KK, Kim C, Yang KS (2006) Positron annihilation spectroscopy of polyacrylonitrile-based carbon fibers embedded with multi-wall carbon nanotubes. Carbon 44:948–953

    Article  Google Scholar 

  291. Ju Y, Choi G, Jung H, Lee W (2008) Electrochemical properties of electrospun PAN/MWCNT carbon nanofibers electrodes coated with polypyrrole. Electrochim Acta 53:5796–5803

    Article  Google Scholar 

  292. Yang KS, Kim C, Park SH, Kim JH, Lee WJ (2006) Fabrications and electrochemical properties of activated carbon nanofibers from electrospinning of various polymers. J Biomed Nanotechnol 2:103–105

    Article  Google Scholar 

  293. Park S, Im S, Rhee JM, Lee Y (2007) Preparation and characterization of activated carbon nanofiber webs containing multiwalled carbon nanotubes by electrospinning. Nanocompos Nanoporous Mater 119:55–58

    Google Scholar 

  294. Wang G, Dong Q, Ling Z, Pan C, Yu C, Qiu J (2012) Hierarchical activated carbon nanofiber webs with tuned structure fabricated by electrospinning for capacitive deionization. J Mater Chem 22:21819–21823

    Article  Google Scholar 

  295. Ostermann R, Cravillon J, Weidmann C, Wiebcke M, Smarsly BM (2011) Metal-organic framework nanofibers via electrospinning. Chem Commun 47:442–444

    Article  Google Scholar 

  296. Xu Y, Wen Y, Zhu W, Wu Y, Lin C, Li G (2012) Electrospun nanofibrous mats as skeletons to produce MOF membranes for the detection of explosives. Mater Lett 87:20–23

    Article  Google Scholar 

  297. Khoshaman AH (2011) Application of electrospun thin films for supra-molecule based gas sensors. Master’s, applied science: school of engineering science

  298. de Melo EF, Santana NdC, Alves KGB, de Sá GF, de Melo CP, Rodrigues MO, Júnior SA (2013) LnMOF@ PVA nanofiber: energy transfer and multicolor light-emitting devices. J Mater Chem C 1:7574–7581

    Article  Google Scholar 

  299. Leong WL, Vittal JJ (2011) One-dimensional coordination polymers: complexity and diversity in structures, properties, and applications. Chem Rev 111:688–764

    Article  Google Scholar 

  300. Carlucci L, Ciani G, Proserpio DM, Sironi A (1997) Extended networks via hydrogen bond cross-linkages of [M(bipy)] (M = Zn2 + or Fe2 +; bipy = 4,4′-bipyridyl) linear co-ordination polymers. J Chem Soc Dalton Trans 11:1801–1803

    Article  Google Scholar 

  301. Aoyagi M, Biradha K, Fujita M (2000) Formation of two, one, and zero-dimensional coordination assemblies from Cd(II) ion and 4,4 ‘-bipyridine. Bull Chem Soc Jpn 73:1369–1373

    Article  Google Scholar 

  302. Kim H, Lee J, Lee M (2005) Stimuli-responsive gels from reversible coordination polymers. Angew Chem Int Ed 44:5810–5814

    Article  Google Scholar 

  303. Kim J, Lee U, Koo BK (2006) One-dimensional network of zinc(II) coordination polymer with 4,4’-bipyridine (4,4’-bipy). Bull Korean Chem Soc 27:918–920

    Article  Google Scholar 

  304. Briceno A, Hill Y, Gonzalez T, Diaz de Delgado G (2009) Combining hydrogen bonding and metal coordination for controlling topochemical [2 + 2] cycloaddition from multi-component assemblies. Dalton Trans 9:1602–1610

    Article  Google Scholar 

  305. Rajput L, Sarkar M, Biradha K (2010) Assembling one-dimensional coordination polymers into three-dimensional architectures via hydrogen bonds. J Chem Sci 122:707–720

    Article  Google Scholar 

  306. Lu JY, Norman C, Abboud KA, Ison A (2001) Crystal engineering of an inclusion coordination polymer with cationic pocket-like structure and its property to form metal–organic nanofibers. Inorg Chem Commun 4:459–461

    Article  Google Scholar 

  307. Lu JY, Runnels KA, Norman C (2001) A new metal-organic polymer with large grid acentric structure created by unbalanced inclusion species and its electrospun nanofibers. Inorg Chem 40:4516–4517

    Article  Google Scholar 

  308. Lu JY, Norman C (2003) Synthesis and structure of two new coordination polymers featuring noncentrosymmetric inclusion of hydrogen-bonded species. Polyhedron 22:235–240

    Article  Google Scholar 

  309. Kuroiwa K, Shibata T, Takada A, Nemoto N, Kimizuka N (2004) Heat-set gel-like networks of lipophilic Co(II) triazole complexes in organic media and their thermochromic structural transitions. J Am Chem Soc 126:2016–2021

    Article  Google Scholar 

  310. Roubeau O, Colin A, Schmitt V, Clérac R (2004) Thermoreversible gels as magneto-optical switches. Angew Chem Int Ed 43:3283–3286

    Article  Google Scholar 

  311. Andrews PC, Junk PC, Massi M, Silberstein M (2006) Gelation of La(III) cations promoted by 5-(2-pyridyl) tetrazolate and water. Chem Commun 31:3317–3319

    Article  Google Scholar 

  312. Fujigaya T, Jiang D, Aida T (2007) Spin-crossover physical gels: a quick thermoreversible response assisted by dynamic self-organization. Chem Asian J 2:106–113

    Article  Google Scholar 

  313. Zhang S, Yang S, Lan J, Yang S, You J (2008) Helical nonracemic tubular coordination polymer gelators from simple achiral molecules. Chem Commun 46:6170–6172

    Article  Google Scholar 

  314. Leong WL, Batabyal SK, Kasapis S, Vittal JJ (2008) Fluorescent magnesium(II) coordination polymeric hydrogel. chemistry? A Eur J 14:8822–8829

    Article  Google Scholar 

  315. Leong WL, Tam AY, Batabyal SK, Koh LW, Kasapis S, Yam VW, Vittal JJ (2008) Fluorescence enhancement of coordination polymeric gel. Chem Commun 31:3628–3630

    Article  Google Scholar 

  316. Grondin P, Roubeau O, Castro M, Saadaoui H, Colin A, Clerac R (2010) Multifunctional gels from polymeric spin-crossover metallo-gelators. Langmuir 26:5184–5195

    Article  Google Scholar 

  317. Batabyal SK, Peedikakkal AMP, Ramakrishna S, Sow CH, Vittal JJ (2009) Coordination-polymeric nanofibers and their field-emission properties. Macromol Rapid Commun 30:1356–1361

    Article  Google Scholar 

  318. Mintova S, Valtchev V (1996) Deposition of zeolite A on vegetal fibers. Zeolites 16:31–34

    Article  Google Scholar 

  319. Lee GS, Lee YJ, Choi SY, Park YS, Yoon KB (2000) Self-assembly of beta-glucosidase and d-glucose-tethering zeolite crystals into fibrous aggregates. J Am Chem Soc 122:12151–12157

    Article  Google Scholar 

  320. Lee GS, Lee Y-, Ha K, Yoon KB (2001) Preparation of flexible zeolite-tethering vegetable fibers. Adv Mater 13:1491–1495

    Article  Google Scholar 

  321. Ke C, Yang WL, Ni Z, Wang YJ, Tang Y, Gu Y, Gao Z (2001) Electrophoretic assembly of nanozeolites: zeolite coated fibers and hollow zeolite fibers. Chem Commun 8:783–784

    Article  Google Scholar 

  322. Dong A, Wang Y, Tang Y, Ren N, Zhang Y, Yue Y, Gao Z (2002) Zeolitic tissue through wood cell templating. Adv Mater 14:926–929

    Article  Google Scholar 

  323. Lin JC, Dipre JT, Yates MZ (2003) Microemulsion-directed synthesis of molecular sieve fibers. Chem Mater 15:2764–2773

    Article  Google Scholar 

  324. Li S, Wang X, Beving D, Chen ZW, Yan YS (2004) Molecular sieving in a nanoporous b-oriented pure-silica-zeolite MFI monocrystal film. J Am Chem Soc 126:4122–4123

    Article  Google Scholar 

  325. Liu BS, Tang DC, Au CT (2005) Fabrication of analcime zeolite fibers by hydrothermal synthesis. Microporous Mesoporous Mater 86:106–111

    Article  Google Scholar 

  326. Zhang J, Dong JH, Luo M, Xiao H, Murad S, Normann RA (2005) Zeolite-fiber integrated optical chemical sensors for detection of dissolved organics in water. Langmuir 21:8609–8612

    Article  Google Scholar 

  327. Song W, Grassian VH, Larsen SC (2006) Fiber and film formation by self-assembly of colloidal silicalite-1 and copper coated silicalite-1 nanocrystals. Microporous Mesoporous Mater 88:77–83

    Article  Google Scholar 

  328. Srinivasan D, Rao R, Zribi A (2006) Synthesis of novel micro- and mesoporous zeolite nanostructures using electrospinning techniques. J Electron Mater 35:504–509

    Article  Google Scholar 

  329. Cucchi I, Spano F, Giovanella U, Catellani M, Varesano A, Calzaferri G, Botta C (2007) Fluorescent electrospun nanofibers embedding dye-loaded zeolite crystals. Small 3:305–309

    Article  Google Scholar 

  330. Di J, Chen H, Wang X, Zhao Y, Jiang L, Yu J, Xu R (2008) Fabrication of zeolite hollow fibers by coaxial electrospinning. Chem Mater 20:3543–3545

    Article  Google Scholar 

  331. Wang Z, Ge Q, Shao J, Yan Y (2009) High performance zeolite LTA pervaporation membranes on ceramic hollow fibers by dipcoating-wiping seed deposition. J Am Chem Soc 131:6910–6911

    Article  Google Scholar 

  332. Liu HA, Balkus KJ Jr (2009) Novel delivery system for the bioregulatory agent nitric oxide. Chem Mater 21:5032–5041

    Article  Google Scholar 

  333. Vohra V, Devaux A, Dieu L, Scavia G, Catellani M, Calzaferri G, Botta C (2009) Energy transfer in fluorescent nanofibers embedding dye-loaded zeolite L crystals. Adv Mater 21:1146–1150

    Article  Google Scholar 

  334. Jiang H, Ge Y, Fu K, Lu Y, Chen C, Zhu J, Dirican M et al (2015) Centrifugally-spun tin-containing carbon nanofibers as anode material for lithium-ion batteries. J Mater Sci 50:1094–1102. doi:10.1007/s10853-014-8666-5

    Article  Google Scholar 

  335. Demir MM, Yilgor I, Yilgor E, Erman B (2002) Electrospinning of polyurethane fibers. Polymer 43:3303–3309

    Article  Google Scholar 

  336. Kalayci VE, Patra PK, Kim YK, Ugbolue SC, Warner SB (2005) Charge consequences in electrospun polyacrylonitrile (PAN) nanofibers. Polymer 46:7191–7200

    Article  Google Scholar 

  337. Rose M, Kockrick E, Senkovska I, Kaskel S (2010) High surface area carbide-derived carbon fibers produced by electrospinning of polycarbosilane precursors. Carbon 48:403–407

    Article  Google Scholar 

  338. Amid H, Jeddi AAA, Salehi M, Dabiryan H (2011) Suitability of tubular woven fabric as the reinforcement of composite pipes. In: Proceedings of ATC-11, Daegu, South Korea

  339. Amid H, Jeddi AAA, Salehi M, Dabiryan H, Pejman R (2015) Investigation of circular woven composite preforms for composite pipes. AUTEX Res J. doi:10.1515/aut-2015-0036

  340. Ciba Specialty Chemicals (1998) Matrimid 5218 Resins. http://www.lindberg-lund.com/files/Tekniske%20datablad/VAN-5218-TD.pdf

  341. Perez EV, Balkus KJ Jr, Ferraris JP, Musselman IH (2009) Mixed-matrix membranes containing MOF-5 for gas separations. J Membr Sci 328:165–173

    Article  Google Scholar 

  342. Nistor C, Shishatskiy S, Popa M, Nunes SP (2008) Composite membranes with cross-linked matrimid selective layer for gas separation. Environ Eng Manag J 7:653–659

    Google Scholar 

  343. Hu J, Cai H, Ren H, Wei Y, Xu Z, Liu H, Hu Y (2010) Mixed-matrix membrane hollow fibers of Cu-3(BTC)(2) MOF and polyimide for gas separation and adsorption. Ind Eng Chem Res 49:12605–12612

    Article  Google Scholar 

  344. Nakao E (1986) Method of manufacturing an electret filter. US Patent 4,592,815

  345. Cohen B, Faass JK, Gipson LH, Jameson LK (2001) Method of attaching a substantially uniform distribution of particulates to individual exposed surfaces of a substrate. US Patent 6,294,222 B1

  346. Carbonell RG (2012) Particles embedded in a porous substrate for removing target analyte from a sample. US Patent 8,101,425

  347. Carbonell RG (2005) Particles embedded in a porous substrate for removing target analyte from a sample. WO Patent 2,005,123,952 A2

  348. Carbonell RG (2012) Devices and methods for removing target agents from a sample. US Patent 8,163,563

  349. Herigstad MO, Gurgel PV, Carbonell RG (2011) Transport and binding characterization of a novel hybrid particle impregnated membrane material for bioseparations. Biotechnol Prog 27:129–139

    Article  Google Scholar 

  350. Ramkumar SS (2009) Process for making chemical protective wipes and such wipes. US Patent 7,516,525

  351. Johnson J, Handy J (2003) Breathing new life into dust collection filters. Ceram Ind 153:39–41

    Google Scholar 

  352. Fukuda T, Shimada M, Ishizaki N, Iwahori S (1980) Carbon adsorptive filter material with layers of reinforcing non woven fabrics needle punched. US Patent 4,181,513

  353. Maltha A, Berkhout E, van der Molen L, Koerntjes M, Colbond BV (2012) Enhanced performance of cabin air filter media with a bicomponent spunbond nonwoven. In: 11th world filtration congress, Graz, Austria

  354. Diederich F (2011) Loaded adsorption filter—a solution for purgeable, volatile components and odours in automotive interiors? In: FILTECH 2011 conference proceedings, Wiesbaden, Germany

  355. Czaja AU, Trukhan N, Mueller U (2009) Industrial applications of metal-organic frameworks. Chem Soc Rev 38:1284–1293

    Article  Google Scholar 

  356. Satya AR, Subramanian S, Seeram R (2012) Functionalized cellulose: PET polymer fibers with zeolites for detoxification against nerve agents. J Inorg Mater 27:332–336

    Article  Google Scholar 

  357. Fibroline (2013) Homogeneous powder distribution inside the support based on strong alternative electric field. http://www.fibroline.com/general-description.htm

Download references

Funding

This study was funded by The Nonwovens Institute (NWI) at North Carolina State University (there was no specific grant number).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hooman Amid.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amid, H., Mazé, B., Flickinger, M.C. et al. Hybrid adsorbent nonwoven structures: a review of current technologies. J Mater Sci 51, 4173–4200 (2016). https://doi.org/10.1007/s10853-016-9741-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-9741-x

Keywords

Navigation