Skip to main content
Log in

Stability comparison between microencapsulated red-glycosidic pigments and commercial FD&C Red 40 dye for food coloring

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In a previous work, we obtained a betalain red dye from Beta vulgaris L. (beet) encapsulated with tetraethyl orthosilicate (TEOS) and studied its stabilities against changes of UV light, pH, and temperature. In the current research, we prepared betalain dyes from B. vulgaris L. and Myrtillocactus geometrizans (bilberry cactus), then we studied the effect of TEOS in the chemical structure by STEM and EDS analyses and its performance compared with a commercial dye FD&C Red 40. STEM showed an inorganic material surrounding an organic material and EDS of the inorganic part showed Si and O presence (dye encapsulation). Encapsulated dyes were more resistant to UV light than FD&C Red 40 and less resistant against pH and temperature changes. M. geometrizans had the highest nutraceutical content; it is not comparable in color appearance with FD&C Red 40, but its degradation is minimal, and in the yogurt model system, it is similar to the colorant of commercial strawberry yogurt. As a result, the red dye from M. geometrizans is a viable alternative to production in large scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Mahdavi SA, Jafari SM, Ghorbani M, Assadpoor E (2014) Spray-drying microencapsulation of anthocyanins by natural biopolymers: a review. Dry Technol 32(5):509–518

    Article  Google Scholar 

  2. Velho SRK, Brum LFW, Petter CO, dos Santos JHZ, Šimunić Š, Kappa WH (2017) Development of structured natural dyes for use into plastics. Dye Pigment 136:248–254

    Article  Google Scholar 

  3. Shahid M, Mohammad F (2013) Recent advancements in natural dye applications: a review. J Clean Prod 53:310–331

    Article  Google Scholar 

  4. FDA (2016) Listing of color additives exempt from certification. 1st April, 2016. http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/cfrsearch.cfm?cfrpart=73&showfr=1. Accessed 20 Dec 2016

  5. FDA (2016) Federal Register: substances generally recognized as safe. 08/17, 2016. https://www.federalregister.gov/documents/2016/08/17/2016-19164/substances-generally-recognized-as-safe. Accessed: 20 Dec 2016

  6. Akhavan Mahdavi S, Jafari SM, Assadpour E, Ghorbani M (2016) Storage stability of encapsulated barberry’s anthocyanin and its application in jelly formulation. J Food Eng 181:59–61

    Article  Google Scholar 

  7. Gandía-Herrero F, Escribano J, García-Carmona F (2016) Biological activities of plant pigments betalains. Crit Rev Food Sci Nutr 56(6):937–945

    Article  Google Scholar 

  8. Sant’Anna V, Gurak PD, Ferreira Marczak LD, Tessaro IC (2013) Tracking bioactive compounds with colour changes in foods—a review. Dye Pigment 98(3):601–608

    Article  Google Scholar 

  9. Swarna J, Lokeswari TS, Smita M, Ravindhran R (2013) Characterisation and determination of in vitro antioxidant potential of betalains from Talinum triangulare (Jacq.) Willd. Food Chem 141(4):4382–4390

    Article  Google Scholar 

  10. Ravichandran K, Saw NMMT, Mohdaly AAA, Gabr AMM, Kastell A, Riedel H, Cai Z, Knorr D, Smetanska I (2013) Impact of processing of red beet on betalain content and antioxidant activity. Food Res Int 50(2):670–675

    Article  Google Scholar 

  11. Fernández-López JA, Angosto JM, Giménez PJ, León G (2013) Thermal stability of selected natural red extracts used as food colorants. Plant Foods Hum Nutr 68(1):11–17

    Article  Google Scholar 

  12. Manchali S, Murthy KNC, Nagaraju S, Neelwarne B (2013) Stability of betalain pigments of red beet. In: Neelwarne B (ed) Red beet biotechnology: food and pharmaceutical applications, Springer, New York. pp 55–74

  13. Johanningsmeier SD, Harris GK (2011) Pomegranate as a functional food and nutraceutical source. Annu Rev Food Sci Technol 2(1):181–201

    Article  Google Scholar 

  14. Lakshmi C (2014) Food coloring: the natural way. Res J Chem Sci Res J Chem Sci 4(2):2231–2606

    Google Scholar 

  15. Ben Haj Koubaier H, Snoussi A, Essaidi I, Chaabouni MM, Thonart P, Bouzouita N (2014) Betalain and phenolic compositions, antioxidant activity of tunisian red beet (Beta vulgaris L. conditiva) roots and stems extracts. Int J Food Prop 17(9):1934–1945

    Article  Google Scholar 

  16. Mahdavee Khazaei K, Jafari SM, Ghorbani M, Hemmati Kakhki A (2014) Application of maltodextrin and gum Arabic in microencapsulation of saffron petal’s anthocyanins and evaluating their storage stability and color. Carbohydr Polym 105(1):57–62

    Article  Google Scholar 

  17. Khan MI (2016) Stabilization of betalains: a review. Food Chem 197:1280–1285

    Article  Google Scholar 

  18. Molina G, Hernández-Martínez A, Cortez-Valadez M, García-Hernández F, Estevez M (2014) Effects of tetraethyl orthosilicate (TEOS) on the light and temperature stability of a pigment from Beta vulgaris and its potential food industry applications. Molecules 19(11):17985–18002

    Article  Google Scholar 

  19. Lima E, Bosch P, Loera S, Ibarra IA, Laguna H, Lara V (2009) Non-toxic hybrid pigments: sequestering betanidin chromophores on inorganic matrices. Appl Clay Sci 42(3):478–482

    Article  Google Scholar 

  20. FIarrison E (2010) Generally recognized as safe determination for silicon dioxide when added directly and/or indirectly to human food. Silicon dioxide GRAS notification. Boston, Massachusetts. http://www.fda.gov/ucm/groups/fdagov-public/@fdagov-foods-gen/documents/document/ucm269494.pdf. Accessed 18 Dec 2016

  21. Freidig AK, Goldman IL (2014) Geosmin (2β,6α-dimethylbicyclo[4.4.0]decan-1β-ol) production associated with Beta vulgaris ssp. vulgaris is cultivar specific. J Agric Food Chem 62(9):2031–2036

    Article  Google Scholar 

  22. Gonçalves LC, de Souza Trassi MA, Lopes NB, Dörr FA, dos Santos MT, Baader WJ, Oliveira VX, Bastos EL (2012) A comparative study of the purification of betanin. Food Chem 131(1):231–238

    Article  Google Scholar 

  23. Nemzer B, Pietrzkowski Z, Spórna A, Stalica P, Thresher W, Michałowski T, Wybraniec S (2011) Betalainic and nutritional profiles of pigment-enriched red beet root (Beta vulgaris L.) dried extracts. Food Chem 127(1):42–53

    Article  Google Scholar 

  24. Guzmán-Maldonado SH, Herrera-Hernández G, Hernández-López D, Reynoso-Camacho R, Guzmán-Tovar A, Vaillant F, Brat P (2010) Physicochemical, nutritional and functional characteristics of two underutilised fruit cactus species (Myrtillocactus) produced in central Mexico. Food Chem 121(2):381–386

    Article  Google Scholar 

  25. Correa-Betanzo J, Jacob JK, Perez-Perez C, Paliyath G (2011) Effect of a sodium caseinate edible coating on berry cactus fruit (Myrtillocactus geometrizans) phytochemicals. Food Res Int 44(7):1897–1904

    Article  Google Scholar 

  26. Shetty AA, Rana MK, Preetham SP (2012) Cactus: a medicinal food. J Food Sci Technol 49(5):530–536

    Article  Google Scholar 

  27. Sumaya-Martínez MT, Cruz-Jaime S, Madrigal-Santillán E, García-Paredes JD, Cariño-Cortés R, Cruz-Cansino N, Valadez-Vega C, Martinez-Cardenas L, Alanís-García E (2011) Betalain, acid ascorbic, phenolic contents and antioxidant properties of purple, red, yellow and white cactus pears. Int J Mol Sci 12(10):6452–6468

    Article  Google Scholar 

  28. Scheinvar L Flora cactológica del estado de Querétaro: diversidad y riqueza/L. Scheinvar; presen. de T. Herrera; pról. de H. Bravo Hollis

  29. Esatbeyoglu T, Wagner AE, Schini-Kerth VB, Rimbach G (2015) Betanin—a food colorant with biological activity. Mol Nutr Food Res 59(1):36–47

    Article  Google Scholar 

  30. Cejudo-Bastante MJ, Chaalal M, Louaileche H, Parrado J, Heredia FJ (2014) Betalain profile, phenolic content, and color characterization of different parts and varieties of Opuntia ficus-indica. J Agric Food Chem 62(33):8491–8499

    Article  Google Scholar 

  31. Herrera-Hernández MG, Guevara-Lara F, Reynoso-Camacho R, Guzmán-Maldonado SH (2011) Effects of maturity stage and storage on cactus berry (Myrtillocactus geometrizans) phenolics, vitamin C, betalains and their antioxidant properties. Food Chem 129(4):1744–1750

    Article  Google Scholar 

  32. Bolaños-Carrillo MA, Ventura-Gallegos JL, Saldivar-Jiménez AD, Zentella-Dehesa A, Martínez-Vázquez M (2015) Effect of sterols isolated from Myrtillocactus geometrizans on growth inhibition of colon and breast cancer cells. Evid Based Complement Alternat Med 2015:589350

    Article  Google Scholar 

  33. Reynoso-Camacho R, Martinez-Samayoa P, Ramos-Gomez M, Guzmán H, Salgado LM (2015) Antidiabetic and renal protective properties of Berrycactus Fruit (Myrtillocactus geometrizans). J Med Food 18(5):565–571

    Article  Google Scholar 

  34. Gokhale SV, Lele SS (2012) Optimization of convective dehydration of Beta vulgaris for color retention. Food Bioprocess Technol 5(3):868–878

    Article  Google Scholar 

  35. Boo H-O, Hwang S-J, Bae C-S, Park S-H, Heo B-G, Gorinstein S (2012) Extraction and characterization of some natural plant pigments. Ind Crops Prod 40:129–135

    Article  Google Scholar 

  36. Kandansamy K, Somasundaram PD (2012) Microencapsulation of colors by spray drying—a review. Int J Food Eng 8(2):1556–3758

    Article  Google Scholar 

  37. Bakar J, Ee SC, Muhammad K, Hashim DM, Adzahan N (2013) Spray-drying optimization for red pitaya peel (Hylocereus polyrhizus). Food Bioprocess Technol 6(5):1332–1342

    Article  Google Scholar 

  38. Mikołajczyk-Bator K, Czapski J (2017) Effect of pH changes on antioxidant capacity and the content of betalain pigments during the heating of a solution of red beet betalains. Pol J Food Nutr Sci 67(2):123–128

    Google Scholar 

  39. Singleton VL, Orthofer R, Lamuela-Raventós RM (1999) Analysis of total phenols and other oxidation substrates and antioxidants by means of folin–ciocalteu reagent. Methods Enzymol 299:152–178

    Article  Google Scholar 

  40. Ramachandra R, Bouwer JC, Mackey MR, Bushong E, Peltier ST, Xuong N-H, Ellisman MH (2014) Improving signal to noise in labeled biological specimens using energy-filtered TEM of sections with a drift correction strategy and a direct detection device. Microsc Microanal 20(3):706–714

    Article  Google Scholar 

  41. Schmied R, Fowlkes JD, Winkler R, Rack PD, Plank H (2015) Fundamental edge broadening effects during focused electron beam induced nanosynthesis. Beilstein J Nanotechnol 6:462–471

    Article  Google Scholar 

Download references

Acknowledgements

Authors are grateful to Engineer Bernardino Rodriguez-Morales for his technical support to carry out the project, to M. C. Guillermo Vazquez and Veronica Flores-Casamayor (at Cinvestav-Qro) for their technical support to carry out the project, and finally to Engineer Ana L. Ramos-Jacques for her grammar, spelling, and style revision of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. R. Hernández-Martínez or M. Estevez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hernández-Martínez, A.R., Torres, D., Molina, G.A. et al. Stability comparison between microencapsulated red-glycosidic pigments and commercial FD&C Red 40 dye for food coloring. J Mater Sci 52, 5014–5026 (2017). https://doi.org/10.1007/s10853-016-0739-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0739-1

Keywords

Navigation