Skip to main content
Log in

Immunostimulating peptide interfacial imprinted magnetic microspheres synthesized via Pickering emulsion polymerization

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this work, super-paramagnetic interface molecularly imprinted microspheres (MIMIMs) were prepared using an immunostimulating hexapeptide as template via photo-initiated Pickering emulsion polymerization by the self-assembly of the template-immobilized silica nanoparticles at the oil–water interface under room temperature. The whole experiment process was tracked and analyzed by various characterization methods. Results manifest that the obtained MIMIMs showed excellent recognition property and rapid-efficiency separation for template peptide due to their accessible imprinted sites and desired magnetic susceptibility. Moreover, MIMIMs were used in competitive rebinding and reusability tests, which demonstrated their potential application in the enrichment of IHH and sustainable performance in resource-saving.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Scheme 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Whitcombe M, Chianella I, Larcombe L, Piletsky S, Noble J, Porter R, Horgan A (2011) The rational development of molecularly imprinted polymer-based sensors for protein detection. Chem Soc Rev 40:1547–1571

    Article  Google Scholar 

  2. De Strooper B, Vassar R, Golde T (2010) The secretases: enzymes with therapeutic potential in Alzheimer disease. Nat Rev Neurol 6:99–107

    Article  Google Scholar 

  3. Erdmann K, Cheung B, Schröder H (2008) The possible roles of food-derived bioactive peptides in reducing the risk of cardiovascular disease. J Nutr Biochem 19:643–654

    Article  Google Scholar 

  4. Jaziri M, Migliore-Samour D, Casabianca-Pignède M, Keddad K, Morgat J, Jollès P (1992) Specific binding sites on human phagocytic blood cells for Gly–Leu–Phe and Val–Glu–Pro–Ile–Pro–Tyr, immunostimulating peptides from human milk proteins. BBA-Protein Struct Mol Enzymol 1160:251–261

    Article  Google Scholar 

  5. Sharma P, Singh N, Garg R, Haq W, Dube A (2004) Efficacy of human β-casein fragment (54–59) and its synthetic analogue compound 89/215 against Leishmania donovani in hamsters. Peptides 25:1873–188111

    Article  Google Scholar 

  6. Thakur D, Saxena R, Singh V, Haq W, Katti S, Singh B, Tripathi R (2012) Human beta casein fragment (54–59) modulates M. bovis BCG survival and basic transcription factor 3 (BTF3) expression in THP-1 cell line. PLoS ONE 7:e45905

    Article  Google Scholar 

  7. Gattegno L, Migliore-Samour D, Saffar L, Jolles P (1988) Enhancement of phagocytic activity of human monocytic-macrophagic cells by immunostimulating peptides from human casein. Immunol Lett 18:27–31

    Article  Google Scholar 

  8. Brantl V, Teschemacher H, Henschen A, Lottspeich F (1979) Novel opioid peptides derived from casein (β-casomorphins) I Isolation from bovine casein peptone. Hoppe–Seyler´s Z Physiol Chem 360:1211–1224

  9. Wulff G, Sarhan A (1972) Use of polymers with enzyme-analogous structures for resolution of racemates. Angew Chem Int Ed 11:341–345

    Google Scholar 

  10. Arshady R, Mosbach K (1981) Synthesis of substrate-selective polymers by host-guest polymerization. Die Makromol Chem 182:687–692

    Article  Google Scholar 

  11. Whitcombe M, Rodriguez M, Villar P, Vulfson E (1995) A new method for the introduction of recognition site functionality into polymers prepared by molecular imprinting: synthesis and characterization of polymeric receptors for cholesterol. J Am ChemSoc 117:7105–7111

    Article  Google Scholar 

  12. Whitcombe M, Kirsch N, Nicholls I (2014) Molecular imprinting science and technology: a survey of the literature for the years 2004–2011. J Mol Recognit 6:297–401

    Article  Google Scholar 

  13. Hu J, Mao X, Cao S, Yuan X (2010) Recognition of proteins and peptides: rational development of molecular imprinting technology. Polym Sci Ser A 52:328–339

    Article  Google Scholar 

  14. Du C, Hu X, Guan P, Guo L, Qian L, Li J, Song R, Tang Y (2015) Synthesis of water-compatible surface-imprinted composite microspheres with core–shell structure for selective recognition of thymopentin from aqueous solution. J Mater Sci 50:427–438. doi:10.1007/s10853-014-8602-8

    Article  Google Scholar 

  15. Guo L, Hu X, Guan P, Du C, Wang D, Song D, Song R (2015) Facile preparation of superparamagnetic surface-imprinted microspheres using amino acid as template for specific capture of thymopentin. Appl Surf Sci 357:1490–1498

    Article  Google Scholar 

  16. Wang Y, Li D, He X, Li W, Zhang Y (2015) Epitope imprinted polymer nanoparticles containing fluorescent quantum dots for specific recognition of human serum albumin. Microchim Acta 182:1465–1472

    Article  Google Scholar 

  17. Schrade A, Landfester K, Ziener U (2013) Pickering-type stabilized nanoparticles by heterophase polymerization. Chem Soc Rev 42:6823–6839

    Article  Google Scholar 

  18. Shen X, Ye L (2011) Interfacial molecular imprinting in nanoparticle-stabilized emulsions. Macromolecules 44:5631–5637

    Article  Google Scholar 

  19. Shen X, Svensson Bonde J, Kamra T, Bülow L, Leo J, Linke D, Ye L (2014) Bacterial imprinting at Pickering emulsion interfaces. Angew Chem Int Ed 53:10687–10690

    Article  Google Scholar 

  20. Zhou T, Zhang K, Kamra T, Bülow L, Ye L (2015) Preparation of protein imprinted polymer beads by Pickering emulsion polymerization. J Mater Chem B 3:1254–1260

    Article  Google Scholar 

  21. Ramos J, Forcada J (2011) Surfactant-free miniemulsion polymerization as a simple synthetic route to a successful encapsulation of magnetite nanoparticles. Langmuir 27:7222–7230

    Article  Google Scholar 

  22. Yang S, Zhang X, Zhao W, Sun L, Luo A (2015) Preparation and evaluation of Fe3O4 nanoparticles incorporated molecularly imprinted polymers for protein separation. J Mater Sci 51:937–949. doi:10.1007/s10853-015-9423-0

    Article  Google Scholar 

  23. You Q, Peng M, Zhang Y, Guo J, Shi S (2014) Preparation of magnetic dummy molecularly imprinted polymers for selective extraction and analysis of salicylic acid in actinidia chinensis. Anal Bioanal Chem 406:831–839

    Article  Google Scholar 

  24. Huang H, Wang X, Ge H, Xu M (2016) Multifunctional magnetic cellulose surface-imprinted microspheres for highly selective adsorption of artesunate. ACS Sustain Chem Eng 4:3334–3343

    Article  Google Scholar 

  25. Yuet K, Hwang D, Haghgooie R, Doyle P (2009) Multifunctional superparamagnetic Janus particles. Langmuir 26:4281–4287

    Article  Google Scholar 

  26. Lattuada M, Hatton T (2007) Preparation and controlled self-assembly of Janus magnetic nanoparticles. J Am Chem Soc 129:12878–12889

    Article  Google Scholar 

  27. Chen K, Zhu Y, Zhang Y, Li L, Lu Y, Guo X (2011) Synthesis of magnetic spherical polyelectrolyte brushes. Macromolecules 44:632–639

    Article  Google Scholar 

  28. Chakraborty S, Jähnichen K, Komber H, Basfar A, Voit B (2014) Synthesis of magnetic polystyrene nanoparticles using amphiphilic ionic liquid stabilized RAFT mediated miniemulsion polymerization. Macromolecules 47:4186–4198

    Article  Google Scholar 

  29. Vashist S, Lam E, Hrapovic S, Male K, Luong J (2014) Immobilization of antibodies and enzymes on 3-aminopropyltriethoxysilane-functionalized bioanalytical platforms for biosensors and diagnostics. Chem Rev 114:11083–11130

    Article  Google Scholar 

  30. Tan C, Chua H, Ker K, Tong Y (2008) Preparation of bovine serum albumin surface-imprinted submicrometer particles with magnetic susceptibility through core-shell miniemulsion polymerization. Anal Chem 80:683–692

    Article  Google Scholar 

  31. Stöber W, Fink A, Bohn E (1968) Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci 26:62–69

    Article  Google Scholar 

  32. Du C, Hu X, Guan P, Gao X, Song R, Li J, Guo L (2016) Preparation of surface-imprinted microspheres effectively controlled by orientated template immobilization using highly cross-linked raspberry-like microspheres for the selective recognition of an immunostimulating peptide. J Mater Chem B 4:1510–1519

    Article  Google Scholar 

  33. Böhmler J, Ploux L, Ball V, Anselme K, Ponche A (2011) Necessity of a thorough characterization of functionalized silicon wafers before biointerface studies. J Phys Chem C 115:11102–11111

    Article  Google Scholar 

  34. Libertino S, Giannazzo F, Aiello V, Scandurra A, Sinatra F, Renis M, Fichera M (2008) XPS and AFM characterization of the enzyme glucose oxidase immobilized on SiO2 surfaces. Langmuir 24:1965–1972

    Article  Google Scholar 

  35. Iwahashi T, Nishi T, Yamane H, Miyamae T, Kanai K, Seki K, Ouchi Y (2009) Surface structural study on ionic liquids using metastable atom electron spectroscopy. J Phys Chem C 113:19237–19243

    Article  Google Scholar 

  36. Du C, Hu X, Guan P, Guo L, Qian L, Song R, Wang C (2015) Water-compatible surface-imprinted microspheres for high adsorption and selective recognition of peptide drug from aqueous media. J Mater Chem B 3:3044–3053

    Article  Google Scholar 

  37. Moulder J, Stickle W, Sobol P, Bomben K (1992) Handbook of X-ray photoelectron spectroscopy ed J Chastain (Eden Prairie, MN: Perkin-Elmer Corporation) chap. 2, pp 42–43

  38. Cottenye N, Teixeira F, Ponche A, Reiter G, Anselme K, Meier W, Ploux L, Vebert-Nardin C (2008) Oligonucleotide nanostructured surfaces: effect on Escherichia coli curli expression. Macromol Biosci 8:1161–1172

    Article  Google Scholar 

  39. Lofgreen J, Ozin G (2014) Controlling morphology and porosity to improve performance of molecularly imprinted sol–gel silica. Chem Soc Rev 43:911–933

    Article  Google Scholar 

  40. Yu C, Mosbach K (1997) Molecular imprinting utilizing an amide functional group for hydrogen bonding leading to highly efficient polymers. J Org Chem 62:4057–4064

    Article  Google Scholar 

  41. Yoshimatsu K, LeJeune J, Spivak D, Ye L (2009) Peptide-imprinted polymer microspheres prepared by precipitation polymerization using a single bi-functional monomer. Analyst 134:719–724

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support provided by the National Natural Science Foundation of China (Grant No. 51433008), and the Graduate Starting Seed Fund of Northwestern Polytechnical University (Grant No. Z2016034).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyan Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 8819 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Hu, X., Guan, P. et al. Immunostimulating peptide interfacial imprinted magnetic microspheres synthesized via Pickering emulsion polymerization. J Mater Sci 52, 4713–4726 (2017). https://doi.org/10.1007/s10853-016-0714-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0714-x

Keywords

Navigation