Skip to main content
Log in

Synthesis of ZnSe microdisks and nanobelts and their visible-light photocatalytic properties

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

ZnSe photocatalytic films made of \( \left\{ {000 1} \right\} \)-ended microdisks and \( \left\{ {2\overline{1} \overline{1} 0} \right\} \)-ended nanobelts have been successfully synthesized via a solvothermal route followed by annealing in Ar atmosphere. Zn foils are used as both the Zn source and the substrate, Se powder as the Se source, and ethylenediamine (en) as the solvent. Lower temperature and Se concentration prefers the formation of \( \left\{ {000 1} \right\} \)-faceted ZnSe microdisks, while higher temperature and Se concentration leads to the formation of \( \left\{ {2\overline{1} \overline{1} 0} \right\} \)-faceted ZnSe nanobelts. Photoluminescence spectra show that both samples exhibit a visible-light emission, and ZnSe microdisks have more defects than ZnSe nanobelts. ZnSe microdisks have a superior photocatalytic activity over ZnSe nanobelts in the degradation of rhodamine B under visible light. The higher photocatalytic activity of ZnSe microdisks is attributed to larger amount of \( \left\{ {000 1} \right\} \) facets and defects in the ZnSe microdisks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Chong MN, Jin B, Chow CWK, Saint C (2010) Recent developments in photocatalytic water treatment technology: a review. Water Res 44:2997–3027

    Article  Google Scholar 

  2. Kamali M, Khodaparast Z (2015) Review on recent developments on pulp and paper mill wastewater treatment. Ecotox Environ Safe 114:326–342

    Article  Google Scholar 

  3. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38

    Article  Google Scholar 

  4. Mano T, Nishimoto S, Kameshima Y, Miyake M (2015) Water treatment efficacy of various metal oxide semiconductors for photocatalytic ozonation under UV and visible light irradiation. Chem Eng J 264:221–229

    Article  Google Scholar 

  5. Lee KM, Lai CW, Ngai KS, Juan JC (2016) Recent developments of zinc oxide based photocatalyst in water treatment technology: a review. Water Res 88:428–448

    Article  Google Scholar 

  6. Daghrir R, Drogui P, Robert D (2013) Modified TiO2 for environmental photocatalytic applications: a review. Ind Eng Chem Res 52:3581–3599

    Article  Google Scholar 

  7. Chen DG, Huang F, Ren GQ, Li DS, Zheng M, Wang YG, Lin Z (2010) ZnS nano-architectures: photocatalysis, deactivation and regeneration. Nanoscale 2:2062–2064

    Article  Google Scholar 

  8. Nasi L, Calestani D, Besagni T, Ferro P, Fabbri F, Licci F, Mosca R (2012) ZnS and ZnO nanosheets from ZnS(en)0.5 precursor: nanoscale structure and photocatalytic properties. J Phys Chem C 116:6960–6965

    Article  Google Scholar 

  9. Schneider J, Matsuoka M, Takeuchi M, Zhang JL, Horiuchi Y, Anpo M, Bahnemann DW (2014) Understanding TiO2 photocatalysis: mechanisms and materials. Chem Rev 114:9919–9986

    Article  Google Scholar 

  10. Weaver AL, Gamelin DR (2012) Photoluminescence brightening via electrochemical trap passivation in ZnSe and Mn2+-doped ZnSe quantum dots. J Am Chem Soc 134:6819–6825

    Article  Google Scholar 

  11. Sarkar S, Acharya S, Chakraborty A, Pradhan N (2013) Zinc blende 0D quantum dots to wurtzite 1D quantum wires: the oriented attachment and phase change in ZnSe nanostructures. J Phys Chem Lett 4:3292–3297

    Article  Google Scholar 

  12. Zedan IT, Azab AA, El-Menyawy EM (2016) Structural, morphological and optical properties of ZnSe quantum dot thin films. Spectrochim Acta A 154:171–176

    Article  Google Scholar 

  13. Hernández R, Rosendo E, Romano-Trujillo R, Oliva AI, García G, Nieto G, Díaz T, Morales C, Juárez H, Pacio M, Galeazzi R (2015) Colloidal synthesis of ZnSe nanoparticles at room temperature. Mater Lett 159:229–232

    Article  Google Scholar 

  14. Xiong SL, Xi BJ, Wang CM, Xi GC, Liu XY, Qian YT (2007) Solution-phase synthesis and high photocatalytic activity of wurtzite ZnSe ultrathin nanobelts: a general route to 1D semiconductor nanostructured materials. Chem Eur J 13:7926–7932

    Article  Google Scholar 

  15. Hu ZD, Duan XF, Gao M, Chen Q, Peng LM (2007) ZnSe Nanobelts and nanowires synthesized by a closed space vapor transport technique. J Phys Chem C 111:2987–2991

    Article  Google Scholar 

  16. Zhuang JP, Liang Y, Xiao XD, Hark SK (2012) Axially-resolved luminescence properties of individual ZnSe nanowires. J Phys Chem C 116:8819–8823

    Article  Google Scholar 

  17. Feng GY, Yang C, Zhou SH (2013) Nanocrystalline Cr2+-doped ZnSe nanowires laser. Nano Lett 13:272–275

    Article  Google Scholar 

  18. Goswami B, Pal S, Ghosh C, Sarkar P (2009) Structural, energetic, and mechanical properties of ZnSe nanotubes. J Phys Chem C 113:6439–6443

    Article  Google Scholar 

  19. Chen LL, Zhang WX, Feng C, Yang ZH, Yang YM (2012) Replacement/etching route to ZnSe nanotube arrays and their enhanced photocatalytic activities. Ind Eng Chem Res 51:4208–4214

    Article  Google Scholar 

  20. Hu JQ, Bando YS, Zhan JH, Liu ZW, Golberg D, Ringer SP (2005) Single-crystalline, submicrometer-sized ZnSe tubes. Adv Mater 17:975–979

    Article  Google Scholar 

  21. Jin L, Wang J, Wallace CH (2008) Growth of ZnSe nanospirals with bending mediated by Lomer–Cottrell sessile dislocations through varying pressure. Cryst Growth Des 8:3829–3833

    Article  Google Scholar 

  22. Deng ZX, Wang C, Sun XM, Li YD (2002) Structure-directing coordination template effect of ethylenediamine in formations of ZnS and ZnSe nanocrystallites via solvothermal route. Inorg Chem 41:869–873

    Article  Google Scholar 

  23. Li XY, Wei B, Wang J, Li XF, Zhai HJ, Wang DD, Liu YQ, Sui YR, Zhang Q, Yang JH (2015) Fabrication and comparison of the photocatalytic activity of ZnSe microflowers and nanosheets. J Mater Sci 26:8484–8488. doi:10.1007/s10854-015-3519-9

    Google Scholar 

  24. Shi WD, Shi JQ, Yu S, Liu P (2013) Ion-exchange synthesis and enhanced visible-light photocatalytic activities of CuSe–ZnSe flower-like nanocomposites. Appl Catal B 138–139:184–190

    Article  Google Scholar 

  25. Zhang LH, Yang HQ, Yu J, Shao FH, Li L, Zhang FH, Zhao H (2009) Controlled synthesis and photocatalytic activity of ZnSe nanostructured assemblies with different morphologies and crystalline phases. J Phys Chem C 113:5434–5443

    Article  Google Scholar 

  26. Xue SL, Wu SX, Zeng QZ, Xie P, Gan KX, Wei J, Bu SY, Ye XN, Xie L, Zou RJ, Zhang CM, Zhu PF (2016) Synthesis, field emission properties and optical properties of ZnSe nanoflowers. Appl Surf Sci 365:69–75

    Article  Google Scholar 

  27. Wu D, Shi ZF, Xu TT, Tian YT, Li XJ (2016) Gate-controllable photoresponse of nitrogen-doped p-type ZnSe nanoribbons top-gate FETs. Mater Lett 164:84–88

    Article  Google Scholar 

  28. Cao HQ, Xiao YJ, Zhang SC (2011) The synthesis and photocatalytic activity of ZnSe microspheres. Nanotechnology 22:015604

    Article  Google Scholar 

  29. Xu JL, Wang W, Zhang X, Chang XJ, Shi ZN, Haarberg GM (2015) Electrodeposition of ZnSe thin film and its photocatalytic properties. J Alloys Compd 632:778–782

    Article  Google Scholar 

  30. Zhang Y, Hu CG, Feng B, Wang X, Wan BY (2011) Synthesis and photocatalytic property of ZnSe flowerlike hierarchical structure. Appl Surf Sci 257:10679–10685

    Article  Google Scholar 

  31. Nagy D, Nagy D, Szilágyicd IM, Fan XF (2016) Effect of the morphology and phases of WO3 nanocrystals on their photocatalytic efficiency. RSC Adv 6:33743–33754

    Article  Google Scholar 

  32. Chen DM, Hao Q, Wang ZH, Ding H, Zhu YF (2016) Influence of phase structure and morphology on the photocatalytic activity of bismuth molybdates. CrystEngComm 18:1976–1986

    Article  Google Scholar 

  33. Zhang J, Yu JG, Zhang YM, Li Q, Gong JR (2011) Visible light photocatalytic H2-production activity of CuS/ZnS porous nanosheets based on photoinduced interfacial charge transfer. Nano Lett 11:4774–4779

    Article  Google Scholar 

  34. Li XY, Wei B, Wang J, Li X, Zhai HJ, Yang JH (2016) Synthesis and comparison of the photocatalytic activities of ZnSe(en)0.5, ZnSe and ZnO nanosheets. J Alloys Compd 689:287–295

    Article  Google Scholar 

  35. Liu B, Ning LC, Zhao H, Zhang CJ, Yang HQ, Liu SZ (2015) Visible-light photocatalysis in Cu2Se nanowires with exposed {111} facets and charge separation between (111) and (\( \overline {\rm{1}} \overline {\rm{1}} \overline {\rm{1}} \)) polar surfaces. Phys Chem Chem Phys 17:13280–13289

    Article  Google Scholar 

  36. Riha SC, Johnson DC, Prieto AL (2011) Cu2Se Nanoparticles with tunable electronic properties due to a controlled solid-state phase transition driven by copper oxidation and cationic conduction. J Am Chem Soc 133:1383–1390

    Article  Google Scholar 

  37. Zhang LH, Yang HQ, Li L, Zhang RG, Liu RN, Ma JH, Xie XL, Gao F (2008) Controlled solvothermal synthesis of nanosheets, nanobelts, and ultralong nanobelt arrays with honeycomb-like micropatterns of ZnSe on zinc substrate. Inorg Chem 47:11950–11957

    Article  Google Scholar 

  38. Huang XY, Harry R IV, Le V, Li J (2001) Inorganic–organic hybrid composites containing MQ (II–VI) Slabs: a new class of nanostructures with strong quantum confinement and periodic arrangement. Chem Mater 13:3754–3759

    Article  Google Scholar 

  39. Lu J, Wei S, Peng YY, Yu WC, Qian YT (2003) Synthesis, structure, and luminescence of 2D-dilute magnetic semiconductors: Zn1-x Mn x Se·0.5L (L = Diamines). J Phys Chem B 107:3427–3430

    Article  Google Scholar 

  40. Lu F, Cai WP, Zhang YG, Li Y, Sun FQ, Heo SH, Cho SO (2007) Fabrication and field emission performance of zinc sulfide nanobelt arrays. J Phys Chem C 111:13385–13392

    Article  Google Scholar 

  41. Florence SS, Umadevi M, John R, Kumari BS, Arockiasamy DL (2013) Structural, morphological and optical properties of chelating ligand passivated ZnSe nanorods. Mater Lett 108:5–8

    Article  Google Scholar 

  42. Aboulaich A, Balan L, Ghanbaja J, Medjahdi G, Merlin C, Schneider R (2011) Aqueous route to biocompatible ZnSe: Mn/ZnO core/shell quantum dots using l-thioglycerol as stabilizer. Chem Mater 23:3706–3713

    Article  Google Scholar 

  43. Pol SV, Pol VG, Calderon-Moreno JM, Cheylan S, Gedanken A (2008) Facile synthesis of photoluminescent ZnS and ZnSe nanopowders. Langmuir 24:10462–10466

    Article  Google Scholar 

  44. Mclaren A, Valdes-Solis T, Li GQ, Tsang SC (2009) Shape and size effects of ZnO nanocrystals on photocatalytic activity. J Am Chem Soc 131:12540–12541

    Article  Google Scholar 

  45. Jang ES, Won JH, Hwang SJ, Choy JH (2006) Fine tuning of the face orientation of ZnO crystals to optimize their photocatalytic activity. Adv Mater 18:3309–3312

    Article  Google Scholar 

  46. Zhang LY, Yin LW, Wang CX, Lun N, Qi YX (2010) Sol-gel growth of hexagonal faceted ZnO prism quantum dots with polar surfaces for enhanced photocatalytic activity. ACS Appl Mater Interface 2:1769–1773

    Article  Google Scholar 

  47. Li GR, Hu T, Pan GL, Yan TY, Gao XP, Zhu HY (2008) Morphology-function relationship of ZnO: polar planes, oxygen vacancies, and activity. J Phys Chem C 112:11859–11864

    Article  Google Scholar 

  48. Zhang J, Sasaki K, Sutter E, Adzic RR (2007) Stabilization of platinum oxygen-reduction electrocatalysts using gold clusters. Science 315:220–222

    Article  Google Scholar 

  49. Wang ZL (2004) Zinc oxide nanostructures: growth, properties and applications. J Phys 16:R829–R858

    Google Scholar 

  50. Vayssieres L, Keis K, Hagfeldt A, Lindquist SE (2001) Three-dimensional array of highly oriented crystalline ZnO microtubes. Chem Mater 13:4395–4398

    Article  Google Scholar 

  51. Kharatzade A, Jamali-Sheini F, Yousefi R (2016) Excellent photocatalytic performance of Zn(1-x)Mg x O/rGO nanocomposites under natural sunlight irradiation and their photovoltaic and UV detector applications. Mater Design 107:47–55

    Article  Google Scholar 

  52. Azarang M, Shuhaimi A, Yousefi R, Jahromi SP (2015) One-pot sol-gel synthesis of reduced graphene oxide uniformly decorated zinc oxide nanoparticles in starch environment for highly efficient photodegradation of methylene Blue. RSC Adv 5:21888–21896

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant Nos. 61378085, 61308095, 11404137 and 51608226), Program for the development of Science and Technology of Jilin province (Item No. 20140101205JC). X. C. acknowledges the support from the College of Arts and Sciences, University of Missouri—Kansas City, and University of Missouri Research Board.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiuyan Li or Xiaobo Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Li, X., Wang, J. et al. Synthesis of ZnSe microdisks and nanobelts and their visible-light photocatalytic properties. J Mater Sci 52, 3821–3830 (2017). https://doi.org/10.1007/s10853-016-0638-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0638-5

Keywords

Navigation