Skip to main content

Advertisement

Log in

Direct grafting of octamaleamic acid-polyhedral oligomeric silsesquioxanes onto the surface of carbon fibers and the effects on the interfacial properties and anti-hydrothermal aging behaviors of silicone resin composites

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The interface between carbon fibers (CFs) and matrix resin makes a critical contribution to bulk performance of composites. In order to enhance interfacial properties and anti-hydrothermal aging behaviors of methyl phenyl silicone resin (MPSR) composites, octamaleamic acid-polyhedral oligomeric silsesquioxanes (POSS-acid) were directly grafted onto CFs surface by chemical bonding for the first time. Surface chemical groups and morphologies of CFs before and after POSS-acid grafting were systematically characterized. Scanning electron microscopy and atomic force microscopy images showed a uniform distribution of POSS-acid on the fiber surface and the improved surface roughness. POSS-acid cages grafting could improve obviously the fiber polarity, wettability, and free energy by dynamic contact angle analysis testing. The interlaminar shear strength (ILSS) of MPSR composites reinforced with the POSS-acid-modified CFs (CF-POSS) was 45.01 ± 1.69 MPa, which increased by 52.73 % compared to that of MPSR composites reinforced with untreated CFs (29.47 ± 0.94 MPa). And, impact strength of CF-POSS composites (77.69 ± 2.83 kJ m−2) was increased by 32.89 % compared to that of untreated CF composites (58.46 ± 1.91 kJ m−2). Moreover, ILSS of CF-POSS composites after hydrothermal aging treatment was 40.89 ± 1.51 MPa with a decrease of just 9.15 % compared to that of untreated CF composites (20.52 ± 0.65 MPa) with an obvious decrease of 30.37 %. Meanwhile, POSS-acid functionalization did not decrease fiber tensile strength. Based on our design starting from simple chemistry and inexpensive materials, such hierarchical reinforcements with improved interfacial strength and anti-hydrothermal aging behaviors have great potential in advance polymer matrix composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Ogasawara T, Ishida Y, Kasai T (2009) Mechanical properties of carbon fiber/fullerene-dispersed epoxy composites. Compos Sci Technol 69:2002–2007

    Article  Google Scholar 

  2. Chand S (2000) Review carbon fibers for composites. J Mater Sci 35:1303–1313. doi:10.1023/A:1004780301489

    Article  Google Scholar 

  3. Zhang X, Fan X, Yan C, Li H, Zhu Y, Li X, Yu L (2012) Interfacial microstructure and properties of carbon fiber composites modified with graphene oxide. ACS Appl Mater Interface 4:1543–1552

    Article  Google Scholar 

  4. Guo JH, Lu CX, An F (2012) Effect of electrophoretically deposited carbon nanotubes on the interface of carbon fiber reinforced epoxy composite. J Mater Sci 47:2831–2836. doi:10.1007/s10853-011-6112-5

    Article  Google Scholar 

  5. Delamar M, Desarmot G, Fagebaume O, Hitmi R, Pinsonc J, Savéant J-M (1997) Modification of carbon fiber surfaces by electrochemical reduction of aryl diazonium salts: application to carbon epoxy composites. Carbon 35:801–807

    Article  Google Scholar 

  6. Hughes J (1991) The carbon fibre/epoxy interface-a review. Compos Sci Technol 41:13–45

    Article  Google Scholar 

  7. Wu G, Ma L, Liu L, Wang Y, Xie F, Zhong Z, Zhao M (2015) Interfacially reinforced methylphenylsilicone resin composites by chemically grafting multiwall carbon nanotubes onto carbon fibers. Compos Part B 82:50–58

    Article  Google Scholar 

  8. Zhang R, Gao B, Du W, Zhang J, Cui H, Liu L, Ma Q (2016) Enhanced mechanical properties of multiscale carbon fiber/epoxy composites by fiber surface treatment with graphene oxide/polyhedral oligomeric silsesquioxane. Composites 84:455–463

    Article  Google Scholar 

  9. Major L, Janusz M, Lackner JM, Kot M, Major B (2016) Microstructure characterization of advanced protective Cr/CrN + a-C:H/a-C:H: Cr multilayer coatings on carbon fibre composite (CFC). Carbon 262:191–202

    Google Scholar 

  10. Sager R, Klein P, Lagoudas D, Zhang Q, Liu J, Dai L, Baur J (2009) Effect of carbon nanotubes on the interfacial shear strength of T650 carbon fiber in an epoxy matrix. Compos Sci Technol 69:898–904

    Article  Google Scholar 

  11. Ning H, Li J, Hu N, Yan C, Liu Y, Wu L, Liu F (2015) Interlaminar mechanical properties of carbon fiber reinforced plastic laminates modified with graphene oxide interleaf. Carbon 91:224–233

    Article  Google Scholar 

  12. Chen D, Chen F, Hu X, Zhang H, Yin X, Zhou Y (2015) Thermal stability, mechanical and optical properties of novel addition cured PDMS composites with nano-silica sol and MQ silicone resin. Compos Sci Technol 117:307–314

    Article  Google Scholar 

  13. Zhang Y, Huang Y, Liu X, Yu Y (2003) Studies on the silicone resins cured with polymethylsilazanes at ambient temperature. J Appl Polym Sci 89:1702–1707

    Article  Google Scholar 

  14. Wu G, Ma L, Liu L, Wang Y, Xie F, Zhong Z, Zhao M (2016) Interface enhancement of carbon fiber reinforced methylphenylsilicone resin composites modified with silanized carbon nanotubes. Mater Des 89:1343–1349

    Google Scholar 

  15. Li ZQ, Li DH, Yang RJ (2015) Synthesis, characterization, and properties of a novel polyhedral oligomeric octamethyldiphenylsulfonylsilsesquioxane. J Mater Sci 50:697–703. doi:10.1007/s10853-014-8629-x

    Article  Google Scholar 

  16. Xue Y, Liu Y, Lu F, Qu J, Chen H, Dai L (2012) Functionalization of graphene oxide with polyhedral oligomeric silsesquioxane (POSS) for multifunctional applications. J Phys Chem Lett 3:1607–1612

    Article  Google Scholar 

  17. Sirin H, Kodal M, Karaagac B, Ozkoc G (2016) Effects of octamaleamic acid-POSS used as the adhesion enhancer on the properties of silicone rubber/silica nanocomposites. Composites 98:370–381

    Article  Google Scholar 

  18. Chouwatat P, Nojima S, Higaki Y, Kojio K, Hirai T, Kotaki M, Takahara A (2016) An effect of surface segregation of polyhedral oligomeric silsesquioxanes on surface physical properties of acrylic hard coating materials. Polymer 84:81–88

    Article  Google Scholar 

  19. Zhang W, Li X, Guo X, Yang R (2010) Mechanical and thermal properties and flame retardancy of phosphorus-containing polyhedral oligomeric silsesquioxane (DOPO-POSS)/polycarbonate composites. Polym Degrad Stab 95:2541–2546

    Article  Google Scholar 

  20. Jiang D, Liu L, Long J, Xing L, Huang Y, Wu Z, Yan H (2014) Reinforced unsaturated polyester composites by chemically grafting amino-POSS onto carbon fibers with active double spiral structural spiralphosphodicholor. Compos Sci Technol 100:158–165

    Article  Google Scholar 

  21. Mahfuz H, Powell F, Granata R, Hosur M, Khan M (2011) Coating of carbon fiber with polyhedral oligomeric silsesquioxane (POSS) to enhance mechanical properties and durability of carbon/vinyl ester composites. Materials 4:1619–1631

    Article  Google Scholar 

  22. Jiang D, Liu L, Zhao F, Zhang Q, Sun S, He J, Jiang B (2014) Improved interfacial properties of carbon fiber/unsaturated polyester composites through coating polyhedral oligomeric silsesquioxane on carbon fiber surface. Fiber Polym 15:566–573

    Article  Google Scholar 

  23. Ma C, Kim J, Zhang S, Tang B (2006) Functionalization of carbon nanotubes using a silane coupling agent. Carbon 44:3232–3238

    Article  Google Scholar 

  24. Zhang G, Sun S, Yang D, Dodelet J-P, Sacher E (2008) The surface analytical characterization of carbon fibers functionalized by H2SO4/HNO3 treatment. Carbon 46:196–205

    Article  Google Scholar 

  25. Jia X, Li G, Liu B, Luo Y, Yang G, Yang X (2013) Multiscale reinforcement and interfacial strengthening on epoxy-based composites by silica nanoparticle-multiwalled carbon nanotube complex. Composites 48:101–109

    Article  Google Scholar 

  26. Papirer E, Lacroix R, Donnet J-B, Nansé G, Fioux P (1995) XPS study of the halogenation of carbon black—Part 2 chlorination. Carbon 33:63–72

    Article  Google Scholar 

  27. Peng Q, He X, Li Y, Wang C, Wang R, Hu P, Yan Y (2012) Chemically and uniformly grafting carbon nanotubes onto carbon fibers by poly (amidoamine) for enhancing interfacial strength in carbon fiber composites. J Mater Chem 22:5928–5931

    Article  Google Scholar 

  28. Liao W-H, Tien H-W, Hsiao S-T, Li S-M, Wang Y-S, Huang Y-L, Yang S (2013) Effects of multiwalled carbon nanotubes functionalization on the morphology and mechanical and thermal properties of carbon fiber/vinyl ester composites. ACS Appl Mater Inter 5:3975–3982

    Article  Google Scholar 

  29. Ma PC, Kim J-K, Tang BZ (2006) Functionalization of carbon nanotubes using a silane coupling agent. Carbon 44:3232–3238

    Article  Google Scholar 

  30. Li Y, Li Y, Ding Y, Peng Q, Wang C, Wang R, Sirtharan T (2013) Tuning the interfacial property of hierarchical composites by changing the grafting density of carbon nanotube using 1, 3-propodiamine. Compos Sci Technol 85:36–42

    Article  Google Scholar 

  31. Tzounis L, Debnath S, Rooj S, Fischer D, Mäder E, Das A, Stamm M (2014) High performance natural rubber composites with a hierarchical reinforcement structure of carbon nanotube modified natural fibers. Mater Des 58:1–11

    Article  Google Scholar 

  32. Yuan H, Wang C, Zhang S, Lin X (2012) Effect of surface modification on carbon fiber and its reinforced phenolic matrix composite. Appl Surf Sci 259:288–293

    Article  Google Scholar 

  33. Ma L, Meng L, Wu G, Wang Y, Zhao M, Zhang C, Huang Y (2015) Improving the interfacial properties of carbon fiber-reinforced epoxy composites by grafting of branched polyethyleneimine on carbon fiber surface in supercritical methanol. Compos Sci Technol 114:64–71

    Article  Google Scholar 

  34. Li Y, Peng Q, He X, Hu P, Wang C, Shang Y, Wang R (2012) Chemically and uniformly grafting carbon nanotubes onto carbon fibers by poly (amidoamine) for enhancing interfacial strength in carbon fiber composites. J Mater Chem 22:18748–185752

    Article  Google Scholar 

  35. Mäder E, Gao SL, Plonka R, Wang J (2007) Investigation on adhesion, interphases, and failure behaviour of cyclic butylene terephthalate (CBT)/glass fiber composites. Compos Sci Technol 67:3140–3150

    Article  Google Scholar 

  36. Gao SL, Mäder E (2002) Characterisation of interphase nanoscale property variations in glass fibre reinforced polypropylene and epoxy resin composites. Composites 33:559–576

    Article  Google Scholar 

  37. Zhao F, Huang Y, Liu L, Bai Y, Xu L (2011) Formation of a carbon fiber/polyhedral oligomeric silsesquioxane/carbon nanotube hybrid reinforcement and its effect on the interfacial properties of carbon fiber/epoxy composites. Carbon 49:2624–2632

    Article  Google Scholar 

  38. Liu P, Yang Y (2014) Finite element analysis of the competition between crack deflection and penetration of fiber-reinforced composites using virtual crack closure technique. Appl Compos Mater 21:759–771

    Article  Google Scholar 

  39. Gnanasekaran D, Madhavan K, Reddy B (2009) Developments of polyhedral oligomeric silsesquioxanes (POSS), POSS nanocomposites and their applications: a review. J Sci Ind Res 68:437–464

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the National High Technology Research and Development Program of China (863 Program, Grant No. 2012AA03A212).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangshun Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, G., Chen, L. & Liu, L. Direct grafting of octamaleamic acid-polyhedral oligomeric silsesquioxanes onto the surface of carbon fibers and the effects on the interfacial properties and anti-hydrothermal aging behaviors of silicone resin composites. J Mater Sci 52, 1057–1070 (2017). https://doi.org/10.1007/s10853-016-0401-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0401-y

Keywords

Navigation