Skip to main content
Log in

Tuning the configuration of Au nanostructures: from vermiform-like, rod-like, triangular, hexagonal, to polyhedral nanostructures on c-plane GaN

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The systematic control over the configuration, size, and density of Au nanostructures can directly improve or optimize the physical, chemical, and optoelectronic properties and thus the functionality in the related applications. In this work, we successfully demonstrate the systematic configurational transition of self-assembled Au nanostructures on c-plane GaN via the precise control of annealing temperature, deposition amount, and annealing duration. Depending on the control of annealing temperature, self-assembled Au vermiform-like nanostructures are fabricated and evolve into the faceted Au nanorods and Au hexagons with the minimization of overall surface energy based on the Volmer–Weber growth model. With the deposition amount control, the volume-dependent transition of Au nanostructure configurations from triangles to hexagons and then to polyhedral is clearly observed and discussed based on the combinational effects of growth kinetics and surface free energy distribution. The configurational transition from irregular Au clusters to faceted nanostructures is witnessed along with the incremental variation of annealing duration based on the Ostwald ripening.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Chu R, Corrion A, Chen M et al (2011) 1200-V normally off GaN-on-Si field-effect transistors with low dynamic on-resistance. IEEE Electron Dev Lett 32:632–634

    Article  Google Scholar 

  2. Pengelly RS, Wood SM, Milligan JW et al (2012) A review of GaN on SiC high–electron–mobility power transistors and MMICs. IEEE Trans Microw Theory Tech 60:1764–1783

    Article  Google Scholar 

  3. Palacios T, Chakraborty A, Heikman S et al (2006) AlGaN/GaN high electron mobility transistors with InGaN back-barriers. IEEE Electron Device Lett 27:13–15

    Article  Google Scholar 

  4. Ando Y, Okamoto Y, Miyamoto H et al (2003) 10-W/mm AlGaN-GaN HFET with a field modulating plate. IEEE Electron Device Lett 24:289–291

    Article  Google Scholar 

  5. Kim SJ, Kim HD, Kim KH et al (2014) Fabrication of wide-bandgap transparent electrodes by using conductive filaments: performance breakthrough in vertical-type GaN LED. Sci Rep 4:5827

    Google Scholar 

  6. Chakraborty A, Haskell BA, Keller S et al (2005) Demonstration of nonpolar m-plane InGaN/GaN light-emitting diodes on free-standing m-plane GaN substrates. Jpn J Appl Phys 44:L173–L175

    Article  Google Scholar 

  7. Cho CY, Lee SJ, Song JH et al (2011) Enhanced optical output power of green light-emitting diodes by surface plasmon of gold nanoparticles. Appl Phys Lett 98:051106

    Article  Google Scholar 

  8. Jin Y, Li Q, Li G et al (2014) Enhanced optical output power of blue light-emitting diodes with quasi-aligned gold nanoparticles. Nanoscale Res Lett 9:1

    Article  Google Scholar 

  9. Freeman RG, Grabar KC, Allison KJ, Bright RM (1995) Self-assembled metal colloid monolayers: an approach to SERS substrates. Science 267:1629–1632

    Article  Google Scholar 

  10. Cittadini M, Bersani M, Perrozzi F et al (2014) Graphene oxide coupled with gold nanoparticles for localized surface plasmon resonance based gas sensor. Carbon 69:452–459

    Article  Google Scholar 

  11. Mayer KM, Hafner JH (2011) Localized surface plasmon resonance sensors. Chem Rev 111:3828–3857

    Article  Google Scholar 

  12. Wang C, Astruc D (2014) Nanogold plasmonic photocatalysis for organic synthesis and clean energy conversion. Chem Soc Rev 43:7188–7216

    Article  Google Scholar 

  13. Sui M, Li MY, Kim ES, Lee JH (2014) Annealing temperature effect on the fabrication of self-assembled gold droplets on various type-B GaAs surfaces. CrystEngComm 16:4390–4654

    Article  Google Scholar 

  14. Li MY, Sui M, Kim ES et al (2014) Droplets to merged nanostructures: evolution of gold nanostructures by the variation of deposition amount on Si(111). Cryst Growth Des 14:1128–1134

    Article  Google Scholar 

  15. Seguini G, Curi JL, Spiga S et al (2014) Solid-state dewetting of ultra-thin Au films on SiO2 and HfO2. Nanotechnology 25:495603

    Article  Google Scholar 

  16. Serrano A, de la Fuente OR, García MA (2010) Extended and localized surface plasmons in annealed Au films on glass substrates. J Appl Phys 108:074303

    Article  Google Scholar 

  17. Pandey P, Sui M, Li MY et al (2015) Systematic study on the self-assembled hexagonal au voids, nano-clusters and nanoparticles on GaN (0001). PLoS One 10:e0134637

    Article  Google Scholar 

  18. Rath A, Dash JK, Juluri RR et al (2012) Growth of oriented Au nanostructures: role of oxide at the interface. J Appl Phys 111:064322

    Article  Google Scholar 

  19. Rath A, Dash JK, Juluri RR et al (2014) A study of the initial stages of the growth of Au-assisted epitaxial Ge nanowires on a clean Ge (100) surface. CrystEngComm 16:2486–2490

    Article  Google Scholar 

  20. Rath A, Juluri RR, Satyam PV (2014) Real time nanoscale structural evaluation of gold structures on Si (100) surface using in situ transmission electron microscopy. J Appl Phys 115:184303

    Article  Google Scholar 

  21. Rath A, Dash JK, Juluri RR et al (2011) Temperature-dependent electron microscopy study of Au thin films on Si (1 0 0) with and without a native oxide layer as barrier at the interface. J Phys D Appl Phys 44:115301

    Article  Google Scholar 

  22. Thompson CV (2012) Solid-state dewetting of thin films. Annu Rev Mater Res 42:399–434

    Article  Google Scholar 

  23. Kwon JY, Yoon TS, Kim KB, Min SH (2003) Comparison of the agglomeration behavior of Au and Cu films sputter deposited on silicon dioxide. J Appl Phys 93:3270–3278

    Article  Google Scholar 

  24. Sugawara K, Minamide Y, Kawamura M (2008) Agglomeration behavior of Ag films suppressed by alloying with some elements. Vacuum 83:610–613

    Article  Google Scholar 

  25. Chen Z, Lu D, Yuan H (2002) New method to fabricate InGaN quantum dots by metalorganic chemical vapor deposition. J Cryst Growth 235:188–194

    Article  Google Scholar 

  26. Chen Z, Fareed RQ, Gaevski M (2006) Pulsed lateral epitaxial overgrowth of aluminum nitride on sapphire substrates. Appl Phys Lett 89:081905

    Article  Google Scholar 

  27. Rijnders GUUS, Blank DH (2007) Pulsed laser deposition of thin films In: Eason R (ed) Ch 8. Wiley-Interscience, USA, pp 179–180

  28. Volmer M, Weber AZ (1926) Nucleus formation in supersaturated systems. Z Phys Chem 119:277–301

    Google Scholar 

  29. Witten TA Jr., Sander LM (1981) Diffusion-limited aggregation, a kinetic critical phenomenon. Phys Rev Lett 47:1400–1403

    Article  Google Scholar 

  30. Compton OC, Osterloh FE (2007) Evolution of size and shape in the colloidal crystallization of gold nanoparticles. J Am Chem Soc 129:7793–7798

    Article  Google Scholar 

  31. Zannier V, Grillo V, Martelli F (2014) Tuning the growth mode of nanowires via the interaction among seeds, substrates and beam fluxes. Nanoscale 6:8392–8399

    Article  Google Scholar 

  32. Hou WC, Chen LY, Tang WC, Hong FC (2011) Control of seed detachment in Au-assisted GaN nanowire growths. Cryst Growth Des 11:990–994

    Article  Google Scholar 

  33. Meng G, Yanagida T, Kanai M (2013) Pressure-induced evaporation dynamics of gold nanoparticles on oxide substrate. Phys Rev E 87:012405

    Article  Google Scholar 

  34. Choi WK, Liew TH, Chew HG (2008) A combined top-down and bottom-up approach for precise placement of metal nanoparticles on silicon. small 4:330–333

    Article  Google Scholar 

  35. Pandey P, Sui M, Li MY et al (2016) Nanoparticles to nanoholes: fabrication of porous GaN with precisely controlled dimension via the enhanced GaN decomposition by Au nanoparticles. Cryst Growth Des 16:3334–3344

    Article  Google Scholar 

  36. Xia Y, Xiong Y, Lim B, Skrabalak SE (2009) Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angew Chem Int Ed 48:60–103

    Article  Google Scholar 

  37. Zhang JM, Ma F, Xu KW (2004) Calculation of the surface energy of FCC metals with modified embedded-atom method. Appl Surf Sci 229:34–42

    Article  Google Scholar 

  38. Narayanan R, El-Sayed MA (2005) Catalysis with Transition metal nanoparticles in colloidal solution: nanoparticle shape dependence and stability. J Phys Chem B 109:12663–12676

    Article  Google Scholar 

  39. Tao AR, Habas S, Yang P (2008) Shape Control of Colloidal Metal Nanocrystals. small 4:310–325

  40. Lofton C, Sigmund W (2005) Mechanisms controlling crystal habits of gold and silver colloids. Adv Funct Mater 15:1197–1208

    Article  Google Scholar 

  41. Grzelczak M, Pérez-Juste J, Mulvaney P, Liz-Marzán LM (2008) Shape control in gold nanoparticle synthesis. Chem Soc Rev 37:1783–1791

    Article  Google Scholar 

  42. Li CR, Lu NP, Mei J et al (2011) Polyhedral to nearly spherical morphology transformation of silver microcrystals grown from vapor phase. J Cryst Growth 314:324–330

    Article  Google Scholar 

  43. Pandey P, Sui M, Li MY et al (2015) Shape transformation of self-assembled Au nanoparticles by the systematic control of deposition amount on sapphire (0001). RSC Adv 5:66212–66220

    Article  Google Scholar 

  44. Lee J, Pandey P, Sui M et al (2015) Observation of shape, configuration, and density of Au nanoparticles on various GaAs surfaces via deposition amount, annealing temperature, and dwelling time. Nanoscale Res Lett 10:240

    Article  Google Scholar 

  45. Zinke-Allmang M, Feldman LC, Grabow MH (1992) Clustering on surfaces. Surf Sci Rep 16:377–463

    Article  Google Scholar 

  46. Ruffinoa F, Grimaldi MG (2010) Atomic force microscopy study of the growth mechanisms of nanostructured sputtered Au film on Si(111): evolution with film thickness and annealing time. J Appl Phys 107:104321

    Article  Google Scholar 

Download references

Acknowledgements

This project was supported by the National Research Foundation of South Korea (No. 2011-0030821 and 2016R1A1A1A05005009) and in part by the research Grant of Kwangwoon University in 2016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jihoon Lee.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 3692 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sui, M., Pandey, P., Li, MY. et al. Tuning the configuration of Au nanostructures: from vermiform-like, rod-like, triangular, hexagonal, to polyhedral nanostructures on c-plane GaN. J Mater Sci 52, 391–407 (2017). https://doi.org/10.1007/s10853-016-0339-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0339-0

Keywords

Navigation