Skip to main content
Log in

Enhancement by high gamma radiations of optical and electrical properties of indium oxide thin films for solar devices

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Indium oxide (In2O3) thin films were prepared by spray pyrolysis technique on glass substrates. Prepared thin films were irradiated by gamma radiations with various doses 1, 5, 10, and 100 kGy using an industrial gamma 60Co source. Structural, optical photoluminescence, and electrical properties of irradiated thin layers were investigated, respectively, by X-Ray diffraction, Raman spectroscopy, spectrophotometer, fluorescence spectrometer, and Hall effect. Analysis of structural properties of irradiated thin layers has shown that In2O3 thin films exhibit the same cubic structure with the appearance of new plane orientations (400) and (622) besides the initial one (222) with a decrease in grain size. Transmission values of irradiated thin layers show an increase from 77 to 86 % with the presence of more interference fringes. It was found that band gap energy E g decreases from 3.45 eV to a minimum value of 3.08 eV for a γ-dose of 10 kGy. Envelope method was used to determine the refractive index which decreases after exposing to γ-radiations from 3.38 to a minimum value of 1,98. Photoluminescence spectrum depicts a global diminution in intensity peak after irradiation. Besides, measured electrical resistivity shows a strong decrease from 65.02 × 10−2 Ω cm to a minimum value of 1.02 × 10−2 Ω cm for 5 kGy. These results suggest that gamma radiation can improve the physical properties of indium oxide thin films which can be used as transparent conductive electrode or optical window in photovoltaic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Girtan M, Folcher G (2003) Structural and optical properties of indium oxide thin films prepared by an ultrasonic spray CVD process. Surf Coat Technol 172:242–250

    Article  Google Scholar 

  2. Huang Z, Chai C, Tan X, Wu J, Yuan A, Zhou Z (2007) Photoluminescence properties of the In2O3 octahedrons synthesized by carbothermal reduction method. Mater Lett 61:5137–5140

    Article  Google Scholar 

  3. Baqiah H, Ibrahim NB, Abdi MH, Halim SA (2013) Electrical transport, microstructure and optical properties of Cr-doped In2O3 thin film prepared by sol–gel method. J Alloy Compd 575:198–206

    Article  Google Scholar 

  4. Beji N, Souli M, Ajili M, Azzaza S, Alleg S, Turki NK (2015) Effect of iron doping on structural, optical and electrical properties of sprayed In2O3 thin films. Superlattice Microst 81:114–128

    Article  Google Scholar 

  5. Lai F, Lin L, Gai R, Lin Y, Huang Z (2007) Determination of optical constants and thicknesses of In2O3:Sn films from transmittance data. Thin Solid Films 515:7387–7392

    Article  Google Scholar 

  6. Arshak K, Korostynska O (2004) Thick film oxide diode structures for personal dosimetry application. Sens Actuators 113:319–323

    Article  Google Scholar 

  7. Arshak K, Arshak A, Zleetni S, Korostynska O (2004) Thin and thick films of metal oxides and metal phthalocyanines as gamma radiation dosimeters. IEEE Trans Nucl Sci 51:2250–2255

    Article  Google Scholar 

  8. Arshak K, Korostynska O (2002) Gamma radiation dosimetry using tellurium dioxide thin film structures. Sensors 2:347–355

    Article  Google Scholar 

  9. Arshak A, Zleetni S, Arshak K (2002) γ-radiation sensor using optical and electrical properties of manganese phthalocyanine (MnPc) thick film. Sensors 2:174–184

    Article  Google Scholar 

  10. Arshak K, Korostynska O (2004) Preliminary studies of properties of oxide thin/thick films for gamma radiation dosimetry. Mater Sci Eng B 107:224–232

    Article  Google Scholar 

  11. Patel NG, Patel PD, Vaishnav VS (2003) Indium tin oxide (ITO) thin film gas sensor for detection of methanol at room temperature. Sens Actuators 96:180–189

    Article  Google Scholar 

  12. Arshak K, Twomey K (2002) Thin films of In2O3/SiO for humidity sensing applications. Sensors 2:205–218

    Article  Google Scholar 

  13. Dvoihk L, Kovhi M, Cern S (1994) A new approach to adsorption microcalorimetry based on a LiTaO, pyroelectric temperature sensor and a pulsed molecular beam. Thermochim Acta 245:163–171

    Article  Google Scholar 

  14. Sudha A, Maity TK, Sharma SL (2016) Effects of gamma irradiations on structural and electrical properties of indium oxide thin films prepared by thermal evaporation. Mater Lett 164:372–375

    Article  Google Scholar 

  15. Salem SA (1974) Effect of gamma radiation on the storage of onions used in the dehydration industry. J Sci Food Agric 25:257–262

    Article  Google Scholar 

  16. Farkas J (1998) Irradiation as a method for decontaminating food. Int J Food Microbiol 44:189–204

    Article  Google Scholar 

  17. Berna A (2010) Metal oxide sensors for electronic noses and their application to food analysis. Sensor 10:3882–3910

    Article  Google Scholar 

  18. Hochanadel CJ, Ghormley JA (1953) A calorimetric calibration of gamma-ray actinometers. J Chem Phys 21:880–885

    Article  Google Scholar 

  19. Abhirami KM, Sathyamoorthy R, Asokan K (2013) Structural, optical and electrical properties of gamma irradiated SnO thin films. Radiat Phys Chem 91:35–39

    Article  Google Scholar 

  20. Baydogan N, Ozdemir O, Cimenoglu H (2013) The improvement in the electrical properties of nanospherical ZnO: Al thin film exposed to irradiation using a Co-60 radioisotope. Radiat Phys Chem 89:20–27

    Article  Google Scholar 

  21. Ibrahim AM, Soliman LI (1998) Effect of g-irradiation on optical and electrical properties of Se1−xTex. Radiat Phys Chem 53:469–475

    Article  Google Scholar 

  22. El-Nahass MM, Darwish AAA, El-Zaidia EFM, Bekheet AE (2013) Gamma irradiation effect on the structural and optical properties of nanostructured InSe thin films. J Non-Cryst Solids 382:74–78

    Article  Google Scholar 

  23. El-Nahass MM, Farag AAM, Atta AA (2009) Influence of heat treatment and gamma-rays irradiation on the structural and optical characterizations of nano-crystalline cobalt phthalocyanine thin films. Synth Met 159:589–594

    Article  Google Scholar 

  24. Ramaiah KS, Raja VS, Bhatnagar AK, Juang FS, Chang SJ, Su YK (2000) Effect of annealing and g-irradiation on the properties of CuInSe2 thin films. Mater Lett 45:251–261

    Article  Google Scholar 

  25. Dewan N, Sreenivas K, Gupta V (2008) Comparative study on TeO2 and TeO3 thin film for γ-ray sensor application. Sens Actuators A 147:115–120

    Article  Google Scholar 

  26. Abdul-Kader AM, El-Gendy YA (2013) Influence of c-irradiation on the optical properties of AgSbSe2 thin films. Nucl Instrum Methods Phys Res B 305:22–28

    Article  Google Scholar 

  27. Amin GAM, Gregus J, Zahoran M (2012) Optical response of gamma irradiated-arsenic selenide thin films. Mater Sci Semicond Process 15:455–459

    Article  Google Scholar 

  28. Korostynska O, Arshak K, Hickey G, Forde E (2008) Ozone and gamma radiation sensing properties of In2O3:ZnO:SnO2 thin films. Microsyst Technol 14:557–566

    Article  Google Scholar 

  29. Pentia E, Pintilie L, Botila T, Pintilie I, Chaparro A, Maffiotte C (2003) Bi influence on growth and physical properties of chemical deposited PbS films. Thin Solid Films 434:162–170

    Article  Google Scholar 

  30. Prabahar S, Dhanam M (2005) CdS thin films from two different chemical baths—structural and optical analysis. J Cryst Growth 285:41–48

    Article  Google Scholar 

  31. Williamson GB, Smallman RC (1956) Dislocation densities in some annealed and cold-worked metals from measurements on the X-ray debyescherrer spectrum. Philos Mag 1:34–46

    Article  Google Scholar 

  32. Lehman C (1977) Interaction of radiation with solids and elementary defect production. North-Holland Publishing Company, Amsterdam

    Google Scholar 

  33. Sharma S (2008) Interaction of radiation with matter. Pearson Education, New York

    Google Scholar 

  34. Arshak K, Korostynska O (2003) Gamma radiation-induced changes in the electrical and optical properties of tellurium dioxide thin films. IEEE Sens J 3(6):717

    Article  Google Scholar 

  35. Jrad A, Nasr TB, Turki-Kamoun N (2015) Effects of Al content on physical properties of ZnS thin films prepared by chemical bath deposition. Mater Electron 26:8854–8862

    Article  Google Scholar 

  36. El-Fadl AA, Hafiz MM, Wakaad MM, Aashour AS (2007) Influence of γ-radiation on the optical parameters of Ag10Te90 thin films. Radiat Phys Chem 76:61–66

    Article  Google Scholar 

  37. Yaghmour SJ (2009) Influence of γ-irradiation on optical properties of manganese phthalocyanine thin films. J Alloys Compd 486:284–287

    Article  Google Scholar 

  38. Belgacem S, Bennaceur R (1990) Propriétés optiques des couches minces de SnO2 et CuInS2 airless spray. J Phys Arch 25:1245–1258

    Google Scholar 

  39. Amin GAM (2009) Irradiation effects on the optical properties of amorphous Ge10As30Se60 thin films. Nucl Instrum Methods Phys Res 267:3333–3336

    Article  Google Scholar 

  40. Fallaha HR, Ghasemia M, Hassanzadehb A, Stekic H (2006) The effect of deposition rate on electrical, optical and structural properties of tin-doped indium oxide (ITO) films on glass at low substrate temperature. Phys B 373:274–279

    Article  Google Scholar 

  41. Arshak K, Korostynska O (2006) Response of metal oxide thin film structures to radiation. Mater Sci Eng B 133:1–7

    Article  Google Scholar 

  42. Yang SA, Kim BH, Lee MK, Lee GJ, Lee N-H, Bu SD (2014) Gamma-ray irradiation effects on electrical properties of ferroelectric PbTiO3 and Pb(Zr0.52Ti0.48)O3 thin films. Thin Solid Films 562:185–189

    Article  Google Scholar 

  43. Al-Baradi AM, El-Nahass MM, El-Raheem MMA, Atta AA, Hassanien AM (2014) Effect of gamma irradiation on structural and optical properties of Cd2SnO4 thin films deposited by DC sputtering technique. Radiat Phys Chem 103:227–233

    Article  Google Scholar 

  44. Solimana HS, El-Barrya AMA, Yaghmourb S, Al-Solamib TS (2009) Effects of γ-irradiation and heat treatment on structural, spectral and optical parameters of pyronine G(Y) thin films. J Alloys Compd 481:390–396

    Article  Google Scholar 

  45. Seboui Z, Cuminal Y, Kamoun-Turk N (2013) Physical properties of Cu2ZnSnS4 thin films deposited by spray pyrolysis technique. J Renew Sustain Energy 5:023113

    Article  Google Scholar 

  46. El-Fadl AA, Soltan AS, Abu-Sehly AA (2007) Effect of gamma doses on the optical parameters of Se76Te15Sb9 thin films. J Phys Chem Solids 68:1415–1421

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chayma Nefzi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nefzi, C., Souli, M., Beji, N. et al. Enhancement by high gamma radiations of optical and electrical properties of indium oxide thin films for solar devices. J Mater Sci 52, 336–345 (2017). https://doi.org/10.1007/s10853-016-0334-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0334-5

Keywords

Navigation