Skip to main content
Log in

Superhydrophobic melamine sponge with excellent surface selectivity and fire retardancy for oil absorption

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Flexible porous materials have been widely used as precursors for preparing superhydrophobic oil absorbents due to their high capacity and extraordinary recyclability. A final product with multiple characteristics such as superhydrophobicity, fire retardancy, good elasticity, low cost, and environmental friendliness is highly needed for practical applications. In this study, superhydrophobic melamine sponges (SMSs) with the above characteristics were prepared by modifying melamine sponges with polymethylsilsesquioxane via an immersion method. A villiform layer of organosilane was coated on the surface of the melamine fibers and disclosed by scanning electron microscopy. The superhydrophobicity of the sponge with a water contact angle of 156° is due to the increased surface roughness and methyl terminal groups exposed at the interface. Polycondensation reaction between the secondary amine groups on the raw sponge surface and silanol is identified by ATR-FTIR and EDX spectra. The SMS effectively absorbs various organic solvents and oils from water with excellent absorption rate. In addition, it maintains stable superhydrophobicity in extreme environments, including strong acid/alkali conditions, high/low temperatures, and prolonged immersion in organic solvents. Importantly, the SMS retains the intrinsic fire retardancy of the raw melamine sponge. In simulating oil spill environments, the SMS shows good performance in blocking spread of crude oil spill and separating surfactant-free water-in-oil emulsions. These advantages make it a promising material for oily wastewater treatment and oil spill clean-ups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Korhonen JT, Kettunen M, Ras RHA, Ikkala O (2011) Hydrophobic nanocellulose aerogels as floating, sustainable, reusable, and recyclable oil absorbents. ACS Appl Mater Inter 3(6):1813–1816. doi:10.1021/am200475b

    Article  Google Scholar 

  2. Ge B, Men XH, Zhu XT, Zhang ZZ (2015) A superhydrophobic monolithic material with tunable wettability for oil and water separation. J Mater Sci 50:2365–2369. doi:10.1007/s10853-014-8756-4

    Article  Google Scholar 

  3. Wang EQ, Wang HY, Liu ZJ, Yuan RX, Zhu YJ (2015) One-step fabrication of a nickel foam-based superhydrophobic and superoleophilic box for continuous oil–water separation. J Mater Sci 50:4707–4716. doi:10.1007/s10853-015-9021-1

    Article  Google Scholar 

  4. Liang HW, Guan QF, Chen LF, Zhu Z, Zhang WJ, Yu SH (2012) Macroscopic-scale template synthesis of robust carbonaceous nanofiber hydrogels and aerogels and their applications. Angew Chem Int Ed 51:5101–5105. doi:10.1002/anie.201200710

    Article  Google Scholar 

  5. Zhang J, Ji KJ, Chen J, Ding YF, Dai ZD (2015) A three-dimensional porous metal foam with selective-wettability for oil–water separation. J Mater Sci 50:5371–5377. doi:10.1007/s10853-015-9057-2

    Article  Google Scholar 

  6. An J, Sun HX, Cui JF, Zhu ZQ, Liang WD, Pei CJ, Yang BP, Li A (2014) Surface modification of polypyrrole-coated foam for the capture of organic solvents and oils. J Mater Sci 49:4576–4582. doi:10.1007/s10853-014-8157-8

    Article  Google Scholar 

  7. Bi HC, Yin ZY, Cao XH, Xie X, Tan CL, Huang X, Chen B, Chen FT, Yang QL, Bu XY, Lu XH, Sun LT, Zhang H (2013) Carbon fiber aerogel made from raw cotton: a novel efficient and recyclable sorbent for oils and organic solvents. Adv Mater 25:5916–5921. doi:10.1002/adma.201302435

    Article  Google Scholar 

  8. Yu YX, Wu XY, Fang JY (2015) Superhydrophobic and superoleophilic “sponge-like” aerogels for oil/water separation. J Mater Sci 50:5115–5124. doi:10.1007/s10853-015-9034-9

    Article  Google Scholar 

  9. Gurav JL, Rao AV, Nadargi DY, Park H-H (2010) Ambient pressure dried TEOS-based silica aerogels: good absorbents of organic liquids. J Mater Sci 45:503–510. doi:10.1007/s10853-009-3968-8

    Article  Google Scholar 

  10. Zhu Q, Chu Y, Wang Z et al (2013) Robust superhydrophobic polyurethane sponge as a highly reusable oil-absorption material. J Mater Chem A 1(17):5386–5393. doi:10.1039/C3TA00125C

    Article  Google Scholar 

  11. Yu YX, Wu XY, Guo DQ, Fang JY (2014) Preparation of flexible, hydrophobic, and oleophilic silica aerogels based on a methyltriethoxysilane precursor. J Mater Sci 49:7715–7722. doi:10.1007/s10853-014-8480-0

    Article  Google Scholar 

  12. Sun T, Fan HY, Wang Z, Wu ZJ (2013) Hydrophobic monolithic silica with abundant pore as efficient adsorbent for organic contaminants removal. J Mater Sci 48:6713–6718. doi:10.1007/s10853-013-7472-9

    Article  Google Scholar 

  13. Ruan CP, Ai KL, Li XB, Lu LH (2014) A superhydrophobic sponge with excellent absorbency and flame retardancy. Angew Chem Int Ed 53:5556–5560. doi:10.1002/anie.201400775

    Article  Google Scholar 

  14. Sun HX, La PQ, Zhu ZQ, Liang WD, Yang BP, Zhao XH, Pei CJ, Li A (2014) Hydrophobic carbon nanotubes for removal of oils and organics from water. J Mater Sci 49:6855–6861. doi:10.1039/C2CC35844A

    Article  Google Scholar 

  15. Annunciado TR, Sydenstricker THD, Amico SC (2005) Experimental investigation of various vegetable fibers as sorbent materials for oil spills. Mar Pollut Bull 50:1340–1346. doi:10.1016/j.marpolbul.2005.04.043

    Article  Google Scholar 

  16. Deschamps G, Caruel H, Borredon M-E, Bonnin C, Vignoles C (2003) Oil removal from water by selective sorption on hydrophobic cotton fibers. 1. Study of sorption properties and comparison with other cotton fiber-based sorbents. Environ Sci Technol 37:1013–1015. doi:10.1021/es020061s

    Article  Google Scholar 

  17. Ali N, El-Harbawi M, Jabal AA, Yin C-Y (2011) Characteristics and oil sorption effectiveness of kapok fibre, sugarcane bagasse and rice husks: oil removal suitability matrix. Environ Technol 33:481–486. doi:10.1080/09593330.2011.579185

    Article  Google Scholar 

  18. Hori K, Flavier M, Kuga S, Lam T, Iiyama K (2000) Excellent oil absorbent kapok [Ceiba pentandra (L.) Gaertn.] fiber: fiber structure, chemical characteristics, and application. J Wood Sci 46:401–404. doi:10.1007/BF00776404

    Article  Google Scholar 

  19. Radetić MM, Jocić DM, Jovančić PM, Petrović ZL, Thomas HF (2003) Recycled wool-based nonwoven material as an oil sorbent. Environ Sci Technol 37:1008–1012. doi:10.1021/es0201303

    Article  Google Scholar 

  20. Bayat A, Aghamiri SF, Moheb A, Vakili-Nezhaad GR (2005) Oil spill cleanup from sea water by sorbent materials. Chem Eng Technol 28:1525–1528. doi:10.1002/ceat.200407083

    Article  Google Scholar 

  21. Wei QF, Mather RR, Fotheringham AF, Yang RD (2003) Evaluation of nonwoven polypropylene oil sorbents in marine oil-spill recovery. Mar Pollut Bull 46:780–783. doi:10.1016/S0025-326X(03)00042-0

    Article  Google Scholar 

  22. Lin JY, Ding B, Yang JM, Yu JY, Sun G (2012) Subtle regulation of the micro and nanostructures of electrospun polystyrene fibers and their application in oil absorption. Nanoscale 4:176–182. doi:10.1039/c1nr10895f

    Article  Google Scholar 

  23. Yuan F, Wei JF, Tang EQ, KY Zhao (2009) Synthesis of butyl acrylate grafted polypropylene fibre and its applications on oil-adsorption in floating water, e-Polymers 9:1079-108610.1515/epoly.2009.9.1.1079

  24. Teas C, Kalligeros S, Zanikos F, Stournas S, Lois E, Anastopoulos G (2001) Investigation of the effectiveness of absorbent materials in oil spills clean up. Desalination 140:259–264. doi:10.1016/S0011-9164(01)00375-7

    Article  Google Scholar 

  25. Roulia M, Chassapis K, Fotinopoulos C, Savvidis T, Katakis D (2003) Dispersion and sorption of oil spills by emulsifier-modified expanded perlite. Spill Sci Technol Bull 8:425–431. doi:10.1016/S1353-2561(02)00066-X

    Article  Google Scholar 

  26. Toyoda M, Inagaki M (2000) Heavy oil sorption using exfoliated graphite: new application of exfoliated graphite to protect heavy oil pollution. Carbon 38:199–210. doi:10.1080/10587250008025452

    Article  Google Scholar 

  27. Toyoda M, Moriya K, J-i Aizawa, Konno H, Inagaki M (2000) Sorption and recovery of heavy oils by using exfoliated graphite Part I: maximum sorption capacity. Desalination 128:205–211. doi:10.1016/S0011-9164(00)00034-5

    Article  Google Scholar 

  28. Reynolds JG, Coronado PR, Hrubesh LW (2001) Hydrophobic aerogels for oil-spill clean up—synthesis and characterization. J Non-Cryst Solids 292:127–137. doi:10.4236/jeas.2014.44013

    Article  Google Scholar 

  29. Yun S, Luo HJ, Gao YF (2014) Superhydrophobic silica aerogel microspheres from methyltrimethoxysilane: rapid synthesis via ambient pressure drying and excellent absorption properties. RSC Adv 4:4535–4542. doi:10.1039/c3ra46911e

    Article  Google Scholar 

  30. Ahmad AL, Sumathi S, Hameed BH (2005) Residual oil and suspended solid removal using natural adsorbents chitosan, bentonite and activated carbon: a comparative study. Chem Eng J 108:179–185. doi:10.1016/j.cej.2005.01.016

    Article  Google Scholar 

  31. Çeçen F, Aktas Ö (2011) Activated carbon for water and wastewater treatment: integration of adsorption and biological treatment. Wiley, Weinheim

    Book  Google Scholar 

  32. Cervin N, Aulin C, Larsson P, Wågberg L (2012) Ultra porous nanocellulose aerogels as separation medium for mixtures of oil/water liquids. Cellulose 19:401–410. doi:10.1080/01694243.2015.1062653

    Article  Google Scholar 

  33. Sun HY, Xu Z, Gao C (2013) Multifunctional, ultra-flyweight, synergistically assembled carbon aerogels. Adv Mater 25:2554–2560. doi:10.1002/adma.201204576

    Article  Google Scholar 

  34. Slaper H, Velders GJM, Matthijsen J (1998) Ozone depletion and skin cancer incidence: a source risk approach. J Hazard Mater 61:77–84. doi:10.1016/S0304-3894(98)00110-1

    Article  Google Scholar 

  35. Schultz MM, Barofsky DF, Field JA (2003) Fluorinated alkyl surfactants. Environ Eng Sci 20:487–501. doi:10.1021/es2011622

    Article  Google Scholar 

  36. Yang Y, Deng YH, Tong Z, Wang CY (2014) Multifunctional foams derived from poly(melamine formaldehyde) as recyclable oil absorbents. J Mater Chem A 2:9994–9999. doi:10.1039/C4TA00939H

    Article  Google Scholar 

  37. Pham VH, Dickerson JH (2014) Superhydrophobic silanized melamine sponges as high efficiency oil absorbent materials. ACS Appl Mater Inter 6:14181–14188. doi:10.1021/am503503m

    Article  Google Scholar 

  38. Tian T, LeJeune ZM, Garno JC (2013) Directed surface assembly of 4-(chloromethyl)phenyltrichlorosilane: self-polymerization within spatially confined sites of Si(111) viewed by atomic force microscopy. Langmuir 29:6529–6536. doi:10.1021/la4010032

    Article  Google Scholar 

  39. Li J-R, Garno JC (2008) Elucidating the role of surface hydrolysis in preparing organosilane nanostructures via particle lithography. Nano Lett 8:1916–1922. doi:10.1021/nl0806062

    Article  Google Scholar 

  40. Gao ZX, Ma ML, Zhai XL, Zhang M, Zang DL, Wang CY (2015) Improvement of chemical stability and durability of superhydrophobic wood surface via a film of TiO2 coated CaCO3 micro-/nano-composite particles. RSC Adv 5:63978–63984. doi:10.1039/C5RA04000K

    Article  Google Scholar 

  41. Gao ZX, Zhai XL, Liu F, Zhang M, Zang DL, Wang CY (2015) Fabrication of TiO2/EP superhydrophobic thin film on filter paper surface. Carbohyd Polym 128:24–31. doi:10.1016/j.carbpol.2015.04.014

    Article  Google Scholar 

  42. Gao ZX, Zhai XL, Wang CY (2015) Facile transformation of superhydrophobicity to hydrophilicity by silica/poly(ɛ-caprolactone) composite film. Appl Surf Sci 359:209–214. doi:10.1016/j.apsusc.2015.09.246

    Article  Google Scholar 

  43. Li KQ, Zeng XR, Li HQ, Lai XJ (2014) Facile fabrication of a robust superhydrophobic/superoleophilic sponge for selective oil absorption from oily water. RSC Adv 4:23861–23868. doi:10.1039/C4RA01227E

    Article  Google Scholar 

  44. Zhao X, Li LX, Li BC, Zhang JP, Wang AQ (2014) Durable superhydrophobic/superoleophilic PDMS sponges and their applications in selective oil absorption and in plugging oil leakages. J Mater Chem A 2:18281–18287. doi:10.1039/C4TA04406A

    Article  Google Scholar 

  45. Zhang WB, Shi Z, Zhang F, Liu X, Jin J, Jiang L (2013) Superhydrophobic and superoleophilic PVDF membranes for effective separation of water-in-oil emulsions with high flux. Adv Mater 25:2071–2076. doi:10.1002/adma.201204520

    Article  Google Scholar 

  46. Wang CF, Lin SJ (2013) Robust superhydrophobic/superoleophilic sponge for effective continuous absorption and expulsion of oil pollutants from water. ACS Appl Mater Inter 5:8861–8864. doi:10.1021/am403266v

    Article  Google Scholar 

  47. Ju JP, Wang TM, Wang QH (2015) A facile approach in fabricating superhydrophobic and superoleophilic poly (vinylidene fluoride) membranes for efficient water–oil separation. J Appl Polym Sci. doi:10.1002/app.42077

    Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (31470584).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengyu Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1602 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Zhai, X., Xiang, T. et al. Superhydrophobic melamine sponge with excellent surface selectivity and fire retardancy for oil absorption. J Mater Sci 52, 73–85 (2017). https://doi.org/10.1007/s10853-016-0235-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0235-7

Keywords

Navigation