Skip to main content
Log in

Facile synthesis of hollow urchin-like NiCo2O4 microspheres for high-performance sodium-ion batteries

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Hollow urchin-like NiCo2O4 microspheres were facilely synthesized by a simple hydrothermal approach combined with subsequent annealing process. The three-dimensional architectures with hollow structure are formed by the mechanism of the nanowires self-assembly associate with the subsequent Ostwald ripening process. The as-obtained NiCo2O4 microspheres with the average diameter of about 5 μm consist of numerous radial nanowires and benefited from the hollow urchin-like microsphere structure, Brunauer–Emmett–Teller results show that it possesses a large specific surface area of 92.8 m2 g−1, when it was applied as an electrode material for sodium-ion batteries, the NiCo2O4 electrode displayed a high invertible capacity of ~440 mAh g−1 after 200 cycles at a current density of 100 mA g−1, and the electrochemical measurement results also indicated the NiCo2O4 electrode possess a charming rate capability. These results suggest a promising application of the hollow urchin-like NiCo2O4 microspheres for the advanced sodium-ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Cheng F, Liang J, Tao Z, Chen J (2011) Functional materials for rechargeable batteries. Adv Funct Mater 23:1695–1715

    Article  Google Scholar 

  2. Scrosati B, Hassoun J, Sun Y-K (2011) Lithium-ion batteries. A look into the future. Energy Environ Sci 4:3287–3295

    Article  Google Scholar 

  3. Gao S, Liao F, Ma S, Zhu L, Shao M (2015) Network-like mesoporous NiCo2O4 grown on carbon cloth for high-performance pseudocapacitors. J Mater Chem A 3:16520–16527

    Article  Google Scholar 

  4. Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D (2011) Challenges in the development of advance Li-ion batteries: a review. Energy Environ Sci 4:3243–3262

    Article  Google Scholar 

  5. Song J, Wang L, Lu Y, Liu J, Guo B, Xiao P, Lee J-J, Yang X-Q, Henkelman G, Goodenough JB (2015) Removal of interstitial H2O in Hexacyanometallates for a superior cathode of a sodium-ion battery. J Am Chem Soc 137:2658–2664

    Article  Google Scholar 

  6. Qian J, Xiong Y, Cao Y, Ai X, Yang H (2014) Synergistic Na-storage reactions in Sn4P3 as a high-capacity cycle-stable anode of Na-ion batteries. Nano Lett 14:1865–1869

    Article  Google Scholar 

  7. Slater MD, Kin D, Lee E, Johnson CS (2013) Sodium-ion batteries. Adv Funct Mater 23:947–958

    Article  Google Scholar 

  8. Qian J, Chen Y, Wu L, Cao Y, Ai X, Yang H (2012) High capacity Na-storage and superior cyclability of nanocomposite Sb/C anode for Na-ion batteries. Chem Commun 48:7070–7072

    Article  Google Scholar 

  9. Deng Q, Wang L, Li J (2015) Electrochemical characterization of Co3O4/MCNTs composite anode materials for sodium-ion batteries. J Mater Sci 50:4142–4148. doi:10.1007/s10853-015-8975-3

    Article  Google Scholar 

  10. Billaud J, Clément RJ, Armstrong AR, Vázquez JC, Rozier P, Grey CP, Bruce PG (2014) β-NaMnO2: a high-performance cathode for sodium-ion batteries. J Am Chem Soc 136:17243–17248

    Article  Google Scholar 

  11. Park Y, Shin D-S, Woo SH, Choi NS, Shin KH, Oh SM, Lee KT, Hong SY (2012) Sodium terephthalate as an organic anode material for sodium-ion batteries. Adv Mater 24:3562–3567

    Article  Google Scholar 

  12. Wang L, Song J, Qiao R, Wray LA, Hossain MA, Chuang Y-D, Yang W, Lu Y, Evans D, Lee J-J, Vail S, Zhao X, Nishijima M, Kakimoto S, Goodenough JB (2015) Rhombohedral Prussian white as cathode for rechargeable sodium-ion batteries. J Am Chem Soc 137:2548–2554

    Article  Google Scholar 

  13. Chen J, Liu Y, Li W, Wu C, Xu L, Yang H (2015) Nanostructured polystyrene/polyaniline/graphene hybrid materials for electrochemical supercapacitor and Na-ion battery applications. J Mater Sci 50:5466–5474. doi:10.1007/s10853-015-9092-z

    Article  Google Scholar 

  14. Wang H, Yu W, Shi J, Mao N, Chen S, Liu W (2016) Biomass derived hierarchical porous carbons as high-performance anodes for sodium-ion batteries. Electrochim Acta 188:103–110

    Article  Google Scholar 

  15. Wang Q, Wang X, Xu J, Ouyang X, Hou X, Chen D, Wang R, Shen G (2014) Flexible coaxial-type fiber supercapacitor based on NiCo2O4 nanosheets electrodes. Nano Energy 8:44–51

    Article  Google Scholar 

  16. Wang Q, Wang X, Liu B, Yu G, Hou X, Chen D, Shen G (2013) NiCo2O4 nanowires arrays supported on Ni foam for high-performance flexible all-solid-state supercapacitors. J Mater Chem A 1:2468–2473

    Article  Google Scholar 

  17. Zhou J, Huang Y, Cao X, Ouyang B, Sun W, Tan C, Zhang Y, Ma Q, Liang S, Yan Q, Zhang H (2015) Two-dimensional NiCo2O4 nanosheet-coated three-dimensional graphene networks for high-rate, long-cycle-life supercapacitors. Nanoscale 7:7035–7039

    Article  Google Scholar 

  18. Zhang G, Lou XW (2013) Controlled growth of NiCo2O4 nanorods and ultrathin nanosheets on carbon nanofibers for high-performance supercapacitors. Sci Rep 3:1470–1475

    Google Scholar 

  19. Mo Y, Ru Q, Chen J, Song X, Guo L, Hu S, Peng S (2015) Three-dimensional NiCo2O4 nanowire arrays: preparation and storage behavior for flexible lithium-ion and sodium-ion batteries with improved electrochemical performance. J Mater Chem A 3:19765–19773

    Article  Google Scholar 

  20. Li T, Li X, Wang Z, Guo H, Li Y (2015) A novel NiCo2O4 anode morphology for lithium-ion batteries. J Mater Chem A 3:11970–11975

    Article  Google Scholar 

  21. Li B, Feng J, Qian Y, Xiong S (2015) Mesoporous quasi-single-crystalline NiCo2O4 superlattice nanoribbons with optimizable lithium storage properties. J Mater Chem A 3:10336–10344

    Article  Google Scholar 

  22. Mondal AK, Su D, Chen S, Kretschmer K, Xie X, Ahn H-J, Wang G (2015) A microwave synthesis of mesoporous NiCo2O4 nanosheets as electrode materials for lithium-ion batteries and supercapacitors. ChemPhysChem 16:169–174

    Article  Google Scholar 

  23. Leng X, Shao Y, Wei S, Jiang Z, Lian J, Wang G, Jiang Q (2015) Ultrathin mesoporous NiCo2O4 nanosheet networks as high-performance anodes for lithium storage. ChemPlusChem 80:1725–1731

    Article  Google Scholar 

  24. Mo Y, Ru Q, Song X, Hu S, Guo L, Chen X (2015) 3-dimensional porous NiCo2O4 nanocomposite as a high-rate capacity anode for lithium-ion batteries. Electrochim Acta 176:575–585

    Article  Google Scholar 

  25. Wang H, Holt CMB, Li Z, Tan X, Amirkhiz BS, Xu Z, Olsen BC, Stephenson T, Mitlin D (2012) Graphene-nickel cobaltite nanocomposite asymmetrical supercapacitor with commercial level mass loading. Nano Res 5:605–617

    Article  Google Scholar 

  26. Gao G, Wu HB, Ding S, Lou XW (2015) Preparation of carbon-coated NiCo2O4@SnO2 Hetero-nanostructures and their reversible lithium storage properties. Small 11:432–436

    Article  Google Scholar 

  27. He Y, Xu L, Zhai Y, Li A, Chen X (2015) A hexangular ring-core NiCo2O4 porous nanosheet/NiO nanoparticle composite as an advanced anode material for LIBs and catalyst for CO oxidation applications. Chem Commun 51:14768–14771

    Article  Google Scholar 

  28. Cheng J, Lu Y, Qiu K, Yan H, Xu J, Han L, Liu X, Luo J, Kim JK, Luo Y (2015) Hierarchical core/shell NiCo2O4@NiCo2O4 nanocactus arrays with dual-functionalities for high performance supercapacitors and Li-ion batteries. Sci Rep 5:12099–12110

    Article  Google Scholar 

  29. Wang H, Gao Q, Hu J (2010) Asymmetric capacitor based on superior porous Ni-Zn-Co oxide/hydroxide and carbon electrodes. J Power Sources 195:3017–3024

    Article  Google Scholar 

  30. Alcántara R, Jaraba M, Lavala P, Tirado JL (2002) NiCo2O4 spinel: first report on a transition metal oxide for the negative electrode of sodium-ion batteries. Chem Mater 14:2847–2848

    Article  Google Scholar 

  31. Ellis BL, Knauth P, Djenizian T (2014) Three-dimensional self-supported metal oxide for advanced energy storage. Adv Mater 26:3368–3397

    Article  Google Scholar 

  32. Sun Y-K, Kim D-H, Yoon CS, Myung S-T, Prakash J, Amine K (2010) A novel cathode material with a concentration gradient for high-energy and safe lithium-ion batteries. Adv Funct Mater 20:485–491

    Article  Google Scholar 

  33. Xia Y, Xiao Z, Duo X, Huang H, Lu X, Yan R, Gan Y, Zhu W, Tu J, Zhang W, Tao X (2013) Green and facile fabrication of hollow porous MnO/C microspheres from microalgaes for lithium-ion batteries. ACS Nano 7:7083–7092

    Article  Google Scholar 

  34. Wu HB, Pan A, Hng HH, Lou XW (2013) Template-assisted formation of rattle-type V2O5 hollow microspheres with enhanced lithium storage properties. Adv Funct Mater 23:5669–5674

    Article  Google Scholar 

  35. Wen Z, Zheng F, Jiang Z, Li M, Luo Y (2013) Solvothermal synthesis of solid and hollow CoO nanospheres and their electrochemical properties in lithium-ion battery. J Mater Sci 48:342–347. doi:10.1007/s10853-012-6751-1

    Article  Google Scholar 

  36. Zhang P, Zhang C, Xie A, Li C, Song J, Shen Y (2016) Novel template-free synthesis of hollow@porous TiO2 superior anode materials for lithium-ion battery. J Mater Sci 51:3448–3453. doi:10.1007/s10853-015-9662-0

    Article  Google Scholar 

  37. Liu B, Zeng HC (2005) Symmetric and asymmetric ostwald ripening in the fabrication of homogeneous core-shell semiconductors. Small 1:566–571

    Article  Google Scholar 

  38. Yu X-Y, Yao X-Z, Luo T, Jia Y, Liu J-H, Huang X-J (2014) Facile synthesis of Urchin-like NiCo2O4 hollow microspheres with enhanced electrochemical properties in energy and environmentally related applications. ACS Appl Mater Interfaces 6:3689–3695

    Article  Google Scholar 

  39. Shi Y, Zhu C, Wang L, Zhao C, Li W, Fung KK, Ma T, Hagfeldt A, Wang N (2013) Ultrarapid sonochemical synthesis of ZnO hierarchical structures: from fundamental research to high efficiencies up to 6.42% for quasi-solid dye-sensitized solar cells. Chem Mater 25:1000–1012

    Article  Google Scholar 

  40. Thissen A, Ensling D, Madrigal FJF, Jaegermann W, Alcántara R, Lavala P, Tirado JL (2005) Photoelectron spectroscopic study of the reaction of Li and Na with NiCo2O4. Chem Mater 17:5202–5208

    Article  Google Scholar 

  41. Yue GH, Zhao YC, Wang CG, Zhang XX, Zhang XQ, Xie QS (2015) Flower-like nickel oxide nanocomposites anode materials for excellent performance lithium-ion batteries. Electrochim Acta 152:315–322

    Article  Google Scholar 

  42. Zhukovskii YF, Kotomin EA, Balaya P, Maier J (2008) Enhanced interfacial lithium storage in nanocomposites of transition metals with LiF and Li2O: comparison of DFT calculations and experimental studies. Solid State Sci 10:491–495

    Article  Google Scholar 

  43. Wu X, Wu W, Li Y, Li F, Liao S (2015) Synthesis and electrochemical performance of rod-like CuFe2O4 as an anode material for Na-ion battery. Mater Lett 138:192–195

    Article  Google Scholar 

  44. Liu Y, Fang X, Ge M, Rong J, Shen C, Zhang A, Enaya HA, Zhou C (2015) SnO2 coated carbon cloth with surface modification as Na-ion battery anode. Nano energy 16:399–407

    Article  Google Scholar 

  45. Su D, Dou S, Wang G (2014) WS2@garphene nanocomposites as anode materials for Na-ion batteries with enhanced electrochemical performance. Chem Commun 50:4192–4195

    Article  Google Scholar 

  46. Jiang Y, Hu M, Zhang D, Yuan T, Sun W, Xu B, Yan M (2014) Transition metal oxides for high performance sodium ion battery anodes. Nano Energy 5:60–66

    Article  Google Scholar 

  47. Sun W, Rui X, Zhu J, Yu L, Zhang Y, Xu Z, Madhavi S, Yan Q (2015) Ultrathin nickel oxide nanosheets for enhanced sodium and lithium storage. J Power Sources 274:755–761

    Article  Google Scholar 

Download references

Acknowledgements

This work was jointly supported by the National Science Foundation of China (Nos. 11572271, 51302236), The National Basic Research Program of China (No. 2012CB933103).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. H. Yue.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X.Q., Zhao, Y.C., Wang, C.G. et al. Facile synthesis of hollow urchin-like NiCo2O4 microspheres for high-performance sodium-ion batteries. J Mater Sci 51, 9296–9305 (2016). https://doi.org/10.1007/s10853-016-0176-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0176-1

Keywords

Navigation