Skip to main content
Log in

Acicular ferrite formation during isothermal holding in HSLA steel

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Microstructural observation and high-resolution dilatometry were employed to investigate acicular ferrite formation during isothermal holding in the HSLA steel. A decrease in isothermal temperature suppresses formation of polygonal ferrite and promotes formation of acicular ferrite. Island-like martensite/austenite constituents are dispersed inside of the acicular ferrite grain. The displacive model assuming autocatalytic nucleation was developed to describe the incomplete transformation phenomenon well. Decrease of isothermal temperature lowers the activation energy, and thus enhances the formation of acicular ferrite. Increase of amount of polygonal ferrite and acicular ferrite both results in decrease of M s. Formation of polygonal ferrite causes diffusion of solute alloying atoms into the untransformed austenite, which lowers M s. Acicular ferrite transformation suppresses martensitic transformation by diffusion of solution atoms during isothermal holding, and introduction of internal stress resulting from volume expansion during FCC → BCC transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Jun HJ, Kang J, Seo D, Kang K, Park C (2006) Effects of deformation and boron on microstructure and continuous cooling transformation in low carbon HSLA steels. Mater Sci Eng A 422:157–162

    Article  Google Scholar 

  2. Rodrigues P, Pereloma E, Santos D (2000) Mechanical properities of an HSLA bainitic steel subjected to controlled rolling with accelerated cooling. Mater Sci Eng A 283:136–143

    Article  Google Scholar 

  3. Wang C, Wu X, Xu N, Liu J (2006) Transmission electron microscopy of martensite/austenite islands in pipeline steel X70. Mater Sci Eng A 438–440:267–271

    Article  Google Scholar 

  4. Zhao M-C, Yang K, Xiao F-R, Shan Y-Y (2003) Continuous cooling transformation of undeformed and deformed low carbon pipeline steels. Mater Sci Eng A 355:126–136

    Article  Google Scholar 

  5. Xiao F-R, Liao B, Shan Y-Y, Qiao G-Y, Zhong Y, Zhang C et al (2006) Challenge of mechanical properties of an acicular ferrite pipeline steel. Mater Sci Eng A 431:41–52

    Article  Google Scholar 

  6. Ricks R, Howell P, Barritte G (1982) The nature of acicular ferrite in HSLA steel weld metals. J Mater Sci 17:732–740. doi:10.1007/BF00540369

    Article  Google Scholar 

  7. Zhao YT, Shang CJ, Yang SW, Wang XM, He XL (2006) The metastable austenite transformation in Mo–Nb–Cu–B low carbon steel. Mater Sci Eng A 433:169–174

    Article  Google Scholar 

  8. Kim YM, Lee H, Kim NJ (2008) Transformation behavior and microstructural characteristics of acicular ferrite in linepipe steels. Mater Sci Eng A 478:361–370

    Article  Google Scholar 

  9. Díaz-Fuentes M, Gutiérrez I (2003) Analysis of different acicular ferrite microstructures generated in a medium-carbon molybdenum steel. Mater Sci Eng A 363:316–324

    Article  Google Scholar 

  10. Wang J, Van der Wolk P, Van der Zwaag S (2000) On the influence of alloying elements on the bainite reaction in low alloy steels during continuous cooling. J Mater Sci 35:4393–4404. doi:10.1023/A:1004865209116

    Article  Google Scholar 

  11. Wang W, Yan W, Zhu L, Hu P, Shan Y, Yang K (2009) Relation among rolling parameters, microstructures and mechanical properties in an acicular ferrite pipeline steel. Mater Des 30:3436–3443

    Article  Google Scholar 

  12. Bhadeshia H, Christian J (1990) Bainite in steels. Metall Trans A 21:767–797

    Article  Google Scholar 

  13. Mittemeijer EJ (2010) Fundamentals of materials science. Springer, Heidelberg

    Google Scholar 

  14. Shi L, Yan Z-S, Liu YC, Yang X, Zhang C, Li HJ (2014) Effect of acicular ferrite on banded structures in low-carbon microalloyed steel. Int J Miner Metall Mater 21:1167–1174

    Article  Google Scholar 

  15. Shi L, Yan ZS, Liu YC, Yang X, Qiao ZQ, Ning BQ, Li HJ (2014) Development of ferrite/bainite bands and study of bainite transformation retardation in HSLA steel during continuous cooling. Met Mater Int 20:19–25

    Article  Google Scholar 

  16. Chen H, Zhu K, Zhao L, van der Zwaag S (2013) Analysis of transformation stasis during the isothermal bainitic ferrite formation in Fe–C–Mn and Fe–C–Mn–Si alloys. Acta Mater 61:5458–5468

    Article  Google Scholar 

  17. Chen H, Borgenstam A, Odqvist J, Zuazo I, Agren J, van der Zwaag S (2013) Application of interrupted cooling experiments to study the mechanism of bainitic ferrite formation in steels. Acta Mater 61:4512–4523

    Article  Google Scholar 

  18. Mishra SK, Das S, Ranganathan S (2002) Precipitation in high strength low alloy (HSLA) steel: a TEM study. Mater Sci Eng A 323:285–292

    Article  Google Scholar 

  19. Babu SS (2004) The mechanism of acicular ferrite in weld deposits. Curr Opin Solid State Mater Sci 8:267–278

    Article  Google Scholar 

  20. Ohmori Y, Maki T (1991) Bainitic transformation in view of displacive mechanism. Mater Trans JIM 32:631–641

    Article  Google Scholar 

  21. Takahashi M (2004) Recent progress: kinetics of the bainite transformation in steels. Curr Opin Solid State Mater Sci 8:213–217

    Article  Google Scholar 

  22. Rees G, Bhadeshia H (1992) Bainite transformation kinetics part 2 non-uniform distribution of carbon. Mater Sci Technol 8:994–1003

    Article  Google Scholar 

  23. Quidort D, Brechet Y (2001) Isothermal growth kinetics of bainite in 0.5% C steels. Acta Mater 49:4161–4170

    Article  Google Scholar 

  24. Koistinen D, Marburger R (1959) A general equation prescribing the extent of the austenite-martensite transformation in pure iron-carbon alloys and plain carbon steels. Acta Metall 7:59–60

    Article  Google Scholar 

  25. Van Bohemen SM, Sietsma J (2008) Modeling of isothermal bainite formation based on the nucleation kinetics. Int J Mater Res 99:739–747

    Article  Google Scholar 

  26. Liu C, Liu Y, Zhang D, Gao Z, Yan Z (2013) Bainite formation kinetics during isothermal holding in modified high Cr ferritic steel. Metall Mater Trans A. 44:5447–5455

    Article  Google Scholar 

  27. Pati S, Cohen M (1969) Nucleation of the isothermal martensitic transformation. Acta Metall 17:189–199

    Article  Google Scholar 

  28. Sidhu G, Bhole S, Chen D, Essadiqi E (2011) An improved model for bainite formation at isothermal temperatures. Scr Mater 64:73–76

    Article  Google Scholar 

  29. Van Bohemen S (2010) Modeling start curves of bainite formation. Metall Mater Trans A. 41:285–296

    Article  Google Scholar 

  30. Bhadeshia H (1981) Driving force for martensitic transformation in steels. Metal Sci 15:175–177

    Article  Google Scholar 

  31. Chester N, Bhadeshia H (1997) Mathematical modelling of bainite transformation kinetics. J Phys IV 7:C541–C546

    Google Scholar 

  32. Van Bohemen SMC (2012) Bainite and martensite start temperature calculated with exponential carbon dependence. Mater Sci Technol 28:487–495

    Article  Google Scholar 

  33. Andrews K (1965) Empirical formulae for the calculation of some transformation temperatures. J Iron Steel Inst. 203:721–727

    Google Scholar 

  34. Patel J, Cohen M (1953) Criterion for the action of applied stress in the martensitic transformation. Acta Metall 1:531–538

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the China National Funds for Distinguished Young Scientists (Granted No. 51325401), the National Natural Science Foundation of China (Granted No. 51501126), the National Magnetic Confinement Fusion Energy Research Project (Granted No. 2015GB119001), and the Key Project of Natural Science Foundation of Tianjin (Granted No. 13JCZDJC32300) for Grant and financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qianying Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Shi, L., Liu, Y. et al. Acicular ferrite formation during isothermal holding in HSLA steel. J Mater Sci 51, 3555–3563 (2016). https://doi.org/10.1007/s10853-015-9675-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9675-8

Keywords

Navigation