Skip to main content
Log in

Effects of temperature and frequency on dynamic mechanical properties of glass/epoxy composites

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Under extreme services conditions, the dynamic mechanical properties of polymer matrix composites play an important role in controlling the durability of composite structures. Temperature–frequency-dependent dynamic mechanical properties of glass/epoxy composites were studied under different loading modes by dynamic mechanical analysis. The temperature-dependent modulus and temperature–frequency-dependent modulus models of epoxy resin and glass/epoxy composites were developed. The physical meaning and how to determine the values of parameters in the model were discussed. All the model predictions showed good agreements with the experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Odegard G, Kumosa M (2000) Elastic-plastic and failure properties of a unidirectional carbon/PMR-15 composite at room and elevated temperatures. Compos Sci Technol 60(16):2979–2988

    Article  Google Scholar 

  2. Havriliak S, Negami S (1966) A complex plane analysis of α-dispersions in some polymer systems. J Polym Sci Part C 14:99–117

    Article  Google Scholar 

  3. Szabo JP, Keough IA (2002) Method for analysis of dynamic mechanical thermal analysis data using the Havriliak-Negami model. Thermochim Acta 392–393:1–12

    Article  Google Scholar 

  4. Setua DK, Gupta YN, Kumar S, Awasthi R, Mall A, Sekhar K (2006) Determination of dynamic mechanical properties of engineering thermoplastics at wide frequency range using Havriliak-Negami model. J Appl Polym Sci 100:677–683

    Article  Google Scholar 

  5. Bai Y, Keller T, Vallee T (2008) Modeling of stiffness of FRP composites under elevated and high temperatures. Compos Sci Technol 68(15–16):3099–3106

    Article  Google Scholar 

  6. Bai Y, Keller T (2014) High temperature performance of polymer composites. Wiley, Weinheim

    Book  Google Scholar 

  7. Mahieux CA, Reifsnider KL (2009) Property modeling across transition temperatures in polymers: a robust stiffness temperature model. Polymer 42(7):3281–3291

    Article  Google Scholar 

  8. Reifsnider KL, Mahieux CA (2002) Property modeling across transition temperatures in polymers: application to filled and unfilled polybutadiene. J Elastom Plast 34(1):79–89

    Article  Google Scholar 

  9. Gibson AG, Browne TNA, Feih S, Mouritz AP (2012) Modeling composite high temperature behavior and fire response under load. J Compos Mater 46(16):2005–2022

    Article  Google Scholar 

  10. Kandare E, Kandola BK, Myler P, Horrocks AR, Edwards G (2010) Thermo-mechanical responses of fibre reinforced epoxy composites exposed to high temperature environments: I : Experimental data acquisition. J Compos Mater 44:3093–3114

    Article  Google Scholar 

  11. Kandare E, Kandola BK, McCarthy ED, Myler P, Edwards G, Jifeng Y, Wang YC (2011) Fiber-reinforced epoxy composites exposed to high temperature environments. Part II: modeling mechanical property degradation. J Compos Mater 45:1511–1521

    Article  Google Scholar 

  12. Nam JD (1991) Polymer matrix degradation: characterization and manufacturing process for high temperature composites. PhD dissertation, University of Washington

  13. Guo ZS, Feng JM, Wang H, Hu HJ, Zhang JQ (2013) A new temperature-dependent modulus model of glass/epoxy composite at elevated temperatures. J Compos Mater 47(26):3303–3310

    Article  Google Scholar 

  14. Feng J, Guo ZS (2015) Temperature-frequency-dependent dynamic mechanical properties of epoxy resin and its composites. Compos Part B. doi:10.1016/j.compositesb.2015.09.040

    Google Scholar 

  15. Fuoss RM, Kirkwood JG (1941) Electrical properties of solids. VIII. Dipole moments in polyvinyl chloride-diphenyl systems. J Am Chem Soc 63(2):385–394

    Article  Google Scholar 

  16. Sanchis MJ, Diaz-Calleja R, Pelissou O, Gargallo L, Radic D (2004) Dynamic mechanical and dielectric relaxations in poly (di-n-chloroalkylitaconates). Polymer 45(6):1845–1855

    Article  Google Scholar 

  17. Faguaga E, Perez CJ, Villarreal N, Rodriguez ES, Alvarez V (2012) Effect of water absorption on the dynamic mechanical properties of composites used for windmill blades. Mater Des 36:609–616

    Article  Google Scholar 

  18. ASTM E1640-13. Standard test method for assignment of the glass transition temperature by dynamic mechanical analysis

  19. Gabbott P (2008) Principles and applications of thermal analysis, vol 1. Blackwell Publishing Ltd, Oxford, p 26

    Book  Google Scholar 

  20. Akay M (1993) Aspects of dynamic mechanical analysis in polymer composites. Compos Sci Technol 47(4):419–423

    Article  Google Scholar 

  21. Tsang CF, Hui HK (2001) Multiplexing frequency mode study of packaging epoxy molding compounds using dynamic mechanical analysis. Thermochim Acta 367–368(8):93–99

    Article  Google Scholar 

  22. Zhang QH, Luo WQ, Gao LX, Chen DJ, Ding MX (2004) Thermal mechanical and dynamic mechanical property of biphenyl polyimide fibers. J Appl Polym Sci 92:1653–1657

    Article  Google Scholar 

  23. Devi LU, Bhagawan SS, Thomas S (2011) Dynamic mechanical properties of pineapple leaf fiber polyester composites. Polym Compos 32:1741–1750

    Article  Google Scholar 

  24. Walker RA, Karbhari VM (2007) Durability based design of FRP jackets for seismic retrofit. Compos Struct 80(4):553–568

    Article  Google Scholar 

  25. Nguyena TC, Bai Y, Zhao XL, Mahaidi RA (2012) Durability of steel/CFRP double strap joints exposed to sea water, cyclic temperature and humidity. Compos Struct 94(5):1834–1845

    Article  Google Scholar 

  26. Ward IM (1971) Mechanical properties of solid polymers, vol 5. Wiley, London

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge NSFC for financial support (10702036, 11472165).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhansheng Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, J., Guo, Z. Effects of temperature and frequency on dynamic mechanical properties of glass/epoxy composites. J Mater Sci 51, 2747–2758 (2016). https://doi.org/10.1007/s10853-015-9589-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9589-5

Keywords

Navigation