Skip to main content

Advertisement

Log in

Effect of hard segment architecture on shape memory properties of polycaprolactone-based polyurethane containing azobenzene

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this work, we synthesized two kinds of polyurethanes with azobenzene as hard segments in the side chains and in the main chains. Their thermal stabilities were high enough for their shape memory application. For polyurethane with azobenzene in the side chain (PU), the azobenzene has more distinctly effect on inhibiting crystallization of polycaprolactone (PCL) because of irregular orientation of azobenzene. For polyurethane with azobenzene in the main chain (PUR), the crystallinity of PCL is mainly affected by its molecular weight. PU-3500 and PUR-3500 exhibit perfect shape fixing ability of 99 % with recovery ratio of 98 % at 50 % strain. The recovery ratio is decreased for PU-3500 and increased for PUR-3500 as the applied strain increased. The mechanism of the hard segment structures effect on the shape memory behavior is briefly discussed. Importantly, the two molecules behave trans–cis isomerization under UV irradiation. This work is crucially important for the structural design of shape memory polyurethane and applications in the smart devices.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 2

Similar content being viewed by others

References

  1. Habault D, Zhang H, Zhao Y (2013) Light-triggered self-healing and shape-memory polymers. Chem Soc Rev 42:7244–7256. doi:10.1039/c3cs35489j

    Article  Google Scholar 

  2. Lendlein A, Kelch S (2002) Shape-memory polymers. Angew Chem Int Ed 41:2034–2057. doi:10.1002/1521-3773(20020617)41:12<2034:AID-ANIE2034>3.0.CO;2-M

    Article  Google Scholar 

  3. Liu C, Qin H, Mather PT (2007) Review of progress in shape-memory polymers. J Mater Chem 17:1543–1558. doi:10.1039/B615954K

    Article  Google Scholar 

  4. Wang Z, Zhao J, Chen M et al (2014) Dually actuated triple shape memory polymers of cross-linked polycyclooctene–carbon nanotube/polyethylene nanocomposites. ACS Appl Mater Interfaces 6:20051–20059. doi:10.1021/am5056307

    Article  Google Scholar 

  5. Meng Q, Hu J (2009) A review of shape memory polymer composites and blends. Compos A Appl Sci Manuf 40:1661–1672. doi:10.1016/j.compositesa.2009.08.011

    Article  Google Scholar 

  6. Bonanno LM, DeLouise LA (2010) Integration of a chemical-responsive hydrogel into a porous silicon photonic sensor for visual colorimetric readout. Adv Funct Mater 20:573–578. doi:10.1002/adfm.200901694

    Article  Google Scholar 

  7. Yu C, Duan Z, Yuan P et al (2013) Electronically programmable, reversible shape change in two- and three-dimensional hydrogel structures. Adv Mater 25:1541–1546. doi:10.1002/adma.201204180

    Article  Google Scholar 

  8. Lendlein A, Langer R (2002) Biodegradable, elastic shape-memory polymers for potential biomedical applications. Science 296:1673–1676. doi:10.1126/science.1066102

    Article  Google Scholar 

  9. Zheng X, Zhou S, Li X, Weng J (2006) Shape memory properties of poly(d, l-lactide)/hydroxyapatite composites. Biomaterials 27:4288–4295. doi:10.1016/j.biomaterials.2006.03.043

    Article  Google Scholar 

  10. Shi Y, Yoonessi M, Weiss RA (2013) High temperature shape memory polymers. Macromolecules 46:4160–4167. doi:10.1021/ma302670p

    Article  Google Scholar 

  11. Ahn S-K, Kasi RM (2011) Exploiting microphase-separated morphologies of side-chain liquid crystalline polymer networks for triple shape memory properties. Adv Funct Mater 21:4543–4549. doi:10.1002/adfm.201101369

    Article  Google Scholar 

  12. Cuevas JM, Rubio R, German L et al (2012) Triple-shape memory effect of covalently crosslinked polyalkenamer based semicrystalline polymer blends. Soft Matter 8:4928–4935. doi:10.1039/C2SM07481H

    Article  Google Scholar 

  13. Bothe M, Mya KY, Jie Lin EM et al (2012) Triple-shape properties of star-shaped POSS-polycaprolactone polyurethane networks. Soft Matter 8:965–972. doi:10.1039/C1SM06474F

    Article  Google Scholar 

  14. Jang MK, Hartwig A, Kim BK (2009) Shape memory polyurethanes cross-linked by surface modified silica particles. J Mater Chem 19:1166–1172. doi:10.1039/B816691A

    Article  Google Scholar 

  15. Alteheld A, Feng Y, Kelch S, Lendlein A (2005) Biodegradable, amorphous copolyester-urethane networks having shape-memory properties. Angew Chem Int Ed 44:1188–1192. doi:10.1002/anie.200461360

    Article  Google Scholar 

  16. Lendlein A, Zotzmann J, Feng Y, Alteheld A, Kelch S (2009) Controlling the switching temperature of biodegradable, amorphous, shape-memory poly(rac-lactide)urethane networks by incorporation of different comonomers. Biomacromolecules 10:975–982. doi:10.1021/bm900038e

    Article  Google Scholar 

  17. Sun H, Mei L, Song C, Cui X, Wang P (2006) The in vivo degradation, absorption and excretion of PCL-based implant. Biomaterials 27:1735–1740. doi:10.1016/j.biomaterials.2005.09.019

    Article  Google Scholar 

  18. Momtaz M, Razavi-Nouri M, Barikani M (2014) Effect of block ratio and strain amplitude on thermal, structural, and shape memory properties of segmented polycaprolactone-based polyurethanes. J Mater Sci 49:7575–7584. doi:10.1007/s10853-014-8466-y

    Article  Google Scholar 

  19. Behl M, Ridder U, Feng Y, Kelch S, Lendlein A (2009) Shape-memory capability of binary multiblock copolymer blends with hard and switching domains provided by different components. Soft Matter 5:676–684. doi:10.1039/B810583A

    Article  Google Scholar 

  20. Lee BS, Chun BC, Chung Y-C, Sul KI, Cho JW (2001) Structure and thermomechanical properties of polyurethane block copolymers with shape memory effect. Macromolecules 34:6431–6437. doi:10.1021/ma001842l

    Article  Google Scholar 

  21. Wang S, Lu L, Gruetzmacher JA, Currier BL, Yaszemski MJ (2006) Synthesis and characterizations of biodegradable and crosslinkable poly(ε-caprolactone fumarate), poly(ethylene glycol fumarate), and their amphiphilic copolymer. Biomaterials 27:832–841. doi:10.1016/j.biomaterials.2005.07.013

    Article  Google Scholar 

  22. Huang WM, Zhao Y, Wang CC et al (2012) Thermo/chemo-responsive shape memory effect in polymers: a sketch of working mechanisms, fundamentals and optimization. J Polym Res 19:1–34. doi:10.1007/s10965-012-9952-z

    Article  Google Scholar 

  23. Behl M, Razzaq MY, Lendlein A (2010) Multifunctional shape-memory polymers. Adv Mater 22:3388–3410. doi:10.1002/adma.200904447

    Article  Google Scholar 

  24. Natansohn A, Rochon P (2002) Photoinduced motions in azo-containing polymers. Chem Rev 102:4139–4175

    Article  Google Scholar 

  25. Chen W, Wei X, Balazs AC, Matyjaszewski K, Russell TP (2011) Phase behavior and photoresponse of azobenzene-containing polystyrene-block-poly(n-butyl methacrylate) block copolymers. Macromolecules 44:1125–1131. doi:10.1021/ma101982u

    Article  Google Scholar 

  26. Wu Y, Natansohn A, Rochon P (2004) Photoinduced birefringence and surface relief gratings in polyurethane elastomers with azobenzene chromophore in the hard segment. Macromolecules 37:6090–6095. doi:10.1021/ma0493980

    Article  Google Scholar 

  27. Yang Y, Wang X, Liu L et al (2007) Structure and photoresponsive behaviors of multiwalled carbon nanotubes grafted by polyurethanes containing azobenzene side chains. J Phys Chem C 111:11231–11239. doi:10.1021/jp0728510

    Article  Google Scholar 

  28. Shevchenko VV, Sidorenko AV, Bliznyuk VN et al (2013) Synthesis and properties of hydroxylated core-fluorinated diamines and polyurethanes based on them with azobenzene nonlinear optical chromophores in the backbone. Polymer 54:6516–6525. doi:10.1016/j.polymer.2013.09.053

    Article  Google Scholar 

  29. Zhang Y, Wang C, Pei X, Wang Q, Wang T (2010) Shape memory polyurethanes containing azo exhibiting photoisomerization function. J Mater Chem 20:9976–9981. doi:10.1039/C0JM01944E

    Article  Google Scholar 

  30. Liu L, Wu X, Li T (2014) Novel polymer electrolytes based on cationic polyurethane with different alkyl chain length. J Power Sources 249:397–404. doi:10.1016/j.jpowsour.2013.10.116

    Article  Google Scholar 

  31. Xue L, Dai S, Li Z (2009) Synthesis and characterization of three-arm poly(ε-caprolactone)-based poly(ester−urethanes) with shape-memory effect at body temperature. Macromolecules 42:964–972. doi:10.1021/ma802437f

    Article  Google Scholar 

  32. Nagata M, Yamamoto Y (2009) Synthesis and characterization of photocrosslinked poly(ε-caprolactone)s showing shape-memory properties. J Polym Sci Part A: Polym Chem 47:2422–2433. doi:10.1002/pola.23333

    Article  Google Scholar 

  33. Lee KM, Knight PT, Chung T, Mather PT (2008) Polycaprolactone—POSS chemical/physical double networks. Macromolecules 41:4730–4738. doi:10.1021/ma800586b

    Article  Google Scholar 

  34. Chen S, Hu J, Zhuo H, Chen S (2011) Effect of MDI–BDO hard segment on pyridine-containing shape memory polyurethanes. J Mater Sci 46:5294–5304. doi:10.1007/s10853-011-5469-9

    Article  Google Scholar 

  35. Zhang L, Jiang Y, Xiong Z et al (2013) Highly recoverable rosin-based shape memory polyurethanes. J Mater Chem A 1:3263–3267. doi:10.1039/C3TA01655B

    Article  Google Scholar 

  36. Niu X, Yang X, Brochu P et al (2012) Bistable large-strain actuation of interpenetrating polymer networks. Adv Mater 24:6513–6519. doi:10.1002/adma.201202876

    Article  Google Scholar 

  37. Wang L, Yang X, Chen H et al (2013) Design of triple-shape memory polyurethane with photo-cross-linking of cinnamon groups. ACS Appl Mater Interfaces 5:10520–10528. doi:10.1021/am402091m

    Article  Google Scholar 

  38. Bellin I, Kelch S, Langer R, Lendlein A (2006) Polymeric triple-shape materials. Proc Natl Acad Sci USA 103:18043–18047. doi:10.1073/pnas.0608586103

    Article  Google Scholar 

  39. Petrović ZS, Hong D, Javni I, Erina N, Zhang F, Ilavský J (2013) Phase structure in segmented polyurethanes having fatty acid-based soft segments. Polymer 54:372–380. doi:10.1016/j.polymer.2012.10.019

    Article  Google Scholar 

  40. Yang JH, Chun BC, Chung Y-C, Cho JH (2003) Comparison of thermal/mechanical properties and shape memory effect of polyurethane block-copolymers with planar or bent shape of hard segment. Polymer 44:3251–3258. doi:10.1016/S0032-3861(03)00260-X

    Article  Google Scholar 

  41. Ortíz-Palacios J, Rodríguez-Alba E, Zaragoza-Galán G, León-Carmona JR, Martínez A, Rivera E (2015) Incorporation of novel azobenzene dyes bearing oligo(ethylene glycol) spacers into first generation dendrimers. Dyes Pigm 116:1–12. doi:10.1016/j.dyepig.2014.11.023

    Article  Google Scholar 

  42. Zhao R, Zhan X, Yao J et al (2013) Reversible photo-controlled mass transfer in a photo-responsive conjugated main-chain polymer film for high contrast surface patterning. Polym Chem 4:5382–5386. doi:10.1039/C3PY00770G

    Article  Google Scholar 

  43. McLean RS, Sauer BB (1997) Tapping-mode AFM studies using phase detection for resolution of nanophases in segmented polyurethanes and other block copolymers. Macromolecules 30:8314–8317. doi:10.1021/ma970350e

    Article  Google Scholar 

  44. Waletzko RS, Korley LTJ, Pate BD, Thomas EL, Hammond PT (2009) Role of increased crystallinity in deformation-induced structure of segmented thermoplastic polyurethane elastomers with PEO and PEO−PPO−PEO soft segments and HDI hard segments. Macromolecules 42:2041–2053. doi:10.1021/ma8022052

    Article  Google Scholar 

  45. Jiang HY, Kelch S, Lendlein A (2006) Polymers move in response to light. Adv Mater 18:1471–1475. doi:10.1002/adma.200502266

    Article  Google Scholar 

  46. Matsumoto H, Ishiguro T, Konosu Y et al (2012) Shape-memory properties of electrospun non-woven fabrics prepared from degradable polyesterurethanes containing poly(ω-pentadecalactone) hard segments. Eur Polym J 48:1866–1874. doi:10.1016/j.eurpolymj.2012.07.008

    Article  Google Scholar 

  47. Hu J, Yang Z, Yeung L, Ji F, Liu Y (2005) Crosslinked polyurethanes with shape memory properties. Polym Int 54:854–859. doi:10.1002/pi.1785

    Article  Google Scholar 

Download references

Acknowledgements

The financial supported by Program for Scientific Research Innovation Team in Colleges and Universities of Shandong Province, the National Natural Science Foundation of China (21204044, 21176147), the Natural Science Foundation of Shandong Province for Excellent Young Scholars (ZR2015JL009) and Ji’nan Overseas Students Pioneer Plan (20120202) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Libin Liu or Tianduo Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 671 kb)

Supplementary material 2 (MPG 4539 kb)

Supplementary material 3 (MPG 4430 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, X., Liu, L., Fang, W. et al. Effect of hard segment architecture on shape memory properties of polycaprolactone-based polyurethane containing azobenzene. J Mater Sci 51, 2727–2738 (2016). https://doi.org/10.1007/s10853-015-9586-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9586-8

Keywords

Navigation