Skip to main content
Log in

On the pressing need to address beam–sample interactions in atomic resolution electron microscopy

  • Invited Viewpoint
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  1. Erni R, Rossell MD, Kisielowski C, Dahmen U (2009) Atomic-resolution imaging with a sub-50-pm electron probe. Phys Rev Lett 102:096101

    Article  Google Scholar 

  2. Kisielowski C, Freitag B, Bischoff M, van Lin H, Lazar S, Knippels G, Tiemeijer P, van der Stam M, von Harrach S, Stekelenburg M, Haider M, Uhlemann S, Mueller H, Hartel P, Kabius B, Miller D, Petrov I, Olson EA, Donchev T, Kenik EA, Lupini AR, Bentley J, Pennycook SJ, Anderson IM, Minor AM, Schmid AK, Duden T, Radmilovic V, Ramasse QM, Watanabe M, Erni R, Stach EA, Denes P, Dahmen U (2008) Detection of single atoms and buried defects in three dimensions by aberration-corrected electron microscope with 0.5-angstrom information limit. Microsc Microanal 14:469–477

    Article  Google Scholar 

  3. Haider M, Hartel P, Müller H, Uhlemann S, Zach J (2010) Information transfer in a TEM corrected for spherical and chromatic aberration. Microsc Microanal 16:393

    Article  Google Scholar 

  4. Kisielowski C, Specht P, Gygax SM, Barton B, Calderon HA, Kang JH, Cieslinski R (2015) Instrumental requirements for the detection of electron beam-induced object excitations at the single atom level in high-resolution transmission electron microscopy. Micron 68:186

    Article  Google Scholar 

  5. Trueblood KN, Buergi HB, Burzlaff H, Dunitz JB, Gramaccioli CM, Schulz HH, Shmueli U, Abrahams SC (1996) Atomic displacement parameter nomenclature. Acta Cryst A52:770–781

    Article  Google Scholar 

  6. Uhlemann S, Mueller H, Hartel P, Zach J, Haider M (2013) Thermal magnetic field noise limits resolution in transmission electron microscopy. Phys Rev Lett 111:046101

    Article  Google Scholar 

  7. Kisielowski C, Wang L-W, Specht P, Calderon HA, Barton B, Jiang B, Kang JH, Cieslinsk R (2013) Real-time, sub-Ångstrom imaging of reversible and irreversible conformations in rhodium catalysts and graphene. Phys Rev B 88:024305

    Article  Google Scholar 

  8. Botton GA, Calderon HA, Kisielowski C (2015) Special section on electron-beam irradiation effects, modifications and control preface. Micron 68:140

    Article  Google Scholar 

  9. Callaway E (2015) The revolution will not be crystallized. Nature 525:172–174

    Article  Google Scholar 

  10. Spence JCH, Chapman HN (2014) The birth of a new field. Phil Trans R Soc B 369:20130309

    Article  Google Scholar 

  11. Henderson R (1995) The potential and limitations of neutrons, electrons, and X-rays for atomic resolution microscopy of unstained biological molecules. Quat Rev Biophys 28:171–193

    Article  Google Scholar 

  12. Egerton RF (2015) Outrun radiation damage with electrons? Adv Struct Chem Imaging 1:5

    Article  Google Scholar 

  13. Dashtia A, Schwander P, Langlois R, Fung R, Li W, Hosseinizadeh A, Liao HY, Pallesen J, Sharma G, Stupinad VA, Simon AE, Dinmand JD, Frank J, Ourmazd A (2014) Trajectories of the ribosome as a Brownian nanomachine. PNAS 111:17492–17497

    Article  Google Scholar 

  14. Stevens A, Yang H, Carin L, Arslan I, Browning ND (2014) The potential for Bayesian compressive sensing to significantly reduce electron dose in high-resolution STEM images. Microscopy 63(1):41–51

    Article  Google Scholar 

  15. Helveg S, Kisielowski CF, Jinschek JR, Specht P, Yuan G, Frei H (2015) Observing gas-catalyst dynamics at atomic resolution and single-atom sensitivity. Micron 68:176

    Article  Google Scholar 

  16. Lolla D, Gorse J, Kisielowski C, Miao J, Taylor PL, Chase GG, Reneker DH (2015) Polyvinylidene fluoride molecules in nanofibers, imaged at atomic scale by aberration corrected electron microscopy. Nanoscale. doi:10.1039/c5nr01619c

    Google Scholar 

  17. Chen F-R, Van Dyck D, Kisielowski C (2015) In-line 3D holography of nanocrystalline objects at atomic resolution. Nat Commun (accepted)

  18. Hall E, Stemmer S, Zheng H, Zhu Y, Co-Chairs (2014) Report of the basic energy sciences workshop on future of electron scattering and diffraction. http://science.energy.gov/bes/news-and-resources/reports/

  19. Kung H (2015) Transformative opportunities in a new era of science. ALS User Meeting, Berkeley

    Google Scholar 

  20. McKinley WA, Feshbach H (1948) The Coulomb scattering of relativistic electrons by nuclei. Phys Rev 74:1759–1763

    Article  Google Scholar 

  21. Schneider S, Surrey A, Pohl D, Schultz L, Rellinghaus B (2014) Atomic surface diffusion on Pt nanoparticles quantified by high-resolution transmission electron microscopy. Micron 63:52–56

    Article  Google Scholar 

  22. Rui Xu R, Chen C-C, Li Wu L, Scott MC, Theis W, Ophus C, Bartels M, Yang Y, Ramezani-Dakhel H, Sawaya MR, Hendrik Heinz H, Marks LD, Ercius P, Miao J (2015) Three-dimensional coordinates of individual atoms in materials revealed by electron tomography. Nat Mat. doi:10.1038/NMAT4426

  23. Flannigan DJ, Zewail AH (2012) 4D electron microscopy, principles and applications. Acc Chem Res 45:1828–1839

    Article  Google Scholar 

  24. Kim JS, LaGrange T, Reed BW, Taheri ML, Armstrong MR, King WE, Browning ND, Campbell GH (2008) Imaging of transient structures using nanosecond in situ TEM. Science 321:1472–1475

    Article  Google Scholar 

  25. Jinschek JR (2014) Advances in the environmental transmission electron microscope (ETEM) for nanoscale in situ studies of gas–solid interactions. Chem Commun 50:2696–2706

    Article  Google Scholar 

  26. Marshall J (2014) Springtime for the artificial leave. Nature 510:22–24

    Article  Google Scholar 

Download references

Acknowledgements

The author is supported by the Molecular Foundry, which is supported by the Office of Science, the Office of Basic Energy Sciences, the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. P. Specht provided fruitful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Kisielowski.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kisielowski, C. On the pressing need to address beam–sample interactions in atomic resolution electron microscopy. J Mater Sci 51, 635–639 (2016). https://doi.org/10.1007/s10853-015-9545-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9545-4

Keywords

Navigation