Skip to main content
Log in

Synthesis of NiCo2S4-based nanostructured electrodes supported on nickel foams with superior electrochemical performance

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

NiCo2S4-based nanostructured films have been grown directly onto nickel foams by a facile two-step method, involving the growth of NiCo-precursor and subsequent conversion into NiCo2S4 via a sulfidation process, with the aid of sodium dodecyl surfactant (SDS). This synthesis method enables the fabrication of binder- and conductive additive-free electrodes for supercapacitors. The influence of the surfactant on the crystal structure, morphology, and electrochemical performance of the electrodes has been investigated. The NiCo2S4-SDS films exhibit a complex cellular and hierarchical porous structure, which are different from NiCo2S4-pure films with nanotube arrays structure. Moreover, the electrochemical tests show that the NiCo2S4-SDS nanostructured electrode exhibits an ultrahigh specific capacitance of 2519 F g−1 at 0.5 A g−1, which doubles that of the NiCo2S4-pure nanotube arrays electrode. In addition, the NiCo2S4-SDS electrode exhibits excellent cycling stability with 90.7 % capacitance retention at 10 A g−1 after 8000 cycles. In view of the low cost and superior electrochemical performance, the NiCo2S4-SDS electrodes are promising electrode materials for high-performance supercapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Yu Z, Tetard L, Zhai L, Thomas J (2015) Supercapacitor electrode materials: nanostructures from 0 to 3 dimensions. Energy Environ Sci 8:702–730

    Article  Google Scholar 

  2. Pu J, Cui FL, Chu SB, Wang TT, Sheng EH, Wang ZH (2014) Preparation and electrochemical characterization of hollow hexagonal NiCo2S4 nanoplates as pseudocapacitor materials. ACS Sustain Chem Eng 2:809–815

    Article  Google Scholar 

  3. Chen HC, Jiang JJ, Zhang L, Xia DD, Zhao YD, Guo DQ, Qi T, Wan HZ (2014) In situ growth of NiCo2S4 nanotube arrays on Ni foam for supercapacitors: maximizing utilization efficiency at high mass loading to achieve ultrahigh areal pseudocapacitance. J Power Sources 254:249–257

    Article  Google Scholar 

  4. Xiao Y, Long C, Zheng MT, Dong HW, Lei BF, Zhang HR, Liu YL (2014) High-capacity porous carbons prepared by KOH activation of activated carbon for supercapacitors. Chin Chem Lett 25:865–868

    Article  Google Scholar 

  5. Zhang YF, Ma MZ, Yang J, Sun CC, Su HQ, Huang W, Dong X (2014) Shape-controlled synthesis of NiCo2S4 and their charge storage characteristics in supercapacitors. Nanoscale 6:9824–9830

    Article  Google Scholar 

  6. Zhang LL, Zhao XS (2009) Carbon-based materials as supercapacitor electrodes. Chem Soc Rev 38:2520–2531

    Article  Google Scholar 

  7. Frackowiak E (2007) Carbon materials for supercapacitor application. Phys Chem Chem Phys 9:1774–1785

    Article  Google Scholar 

  8. Zhu T, Lu YS, Zheng SJ, Chen YG, Guo HB (2015) Influence of nitric acid activation on structure and capacitive performances of ordered mesoporous carbon. Electrochim Acta 152:456–463

    Article  Google Scholar 

  9. Xie K, Qin X, Wang XZ, Wang YN, Tao HS, Wu Q, Yang LJ, Hu Z (2012) Carbon nanocages as supercapacitor electrode materials. Adv Mater 24:347–352

    Article  Google Scholar 

  10. Wang GP, Zhang L, Zhang JJ (2012) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 41:797–828

    Article  Google Scholar 

  11. Nguyen VH, Lamiel C, Shim JJ (2015) Hierarchical mesoporous graphene@Ni-Co-S arrays on nickel foam for high-performance supercapacitors. Electrochim Acta 161:351–357

    Article  Google Scholar 

  12. Yu L, Yang B, Liu Q, Liu JY, Wang X, Song DL, Wang J, Jing XY (2015) Interconnected NiS nanosheets supported by nickel foam: soaking fabrication and supercapacitors application. J Electroanal Chem 739:156–163

    Article  Google Scholar 

  13. Xing JC, Zhu YL, Li MY, Jiao QJ (2014) Hierarchical mesoporous CoS2 microspheres: morphology-controlled synthesis and their superior pseudocapacitive properties. Electrochim Acta 149:285–292

    Article  Google Scholar 

  14. Pu J, Wang ZH, Wu KL, Yu N, Sheng EH (2014) Co9S8 nanotube arrays supported on nickel foam for high-performance supercapacitors. Phys Chem Chem Phys 16:785–791

    Article  Google Scholar 

  15. Huang KJ, Zhang JZ, Fan Y (2015) One-step solvothermal synthesis of different morphologies CuS nanosheets compared as supercapacitor electrode materials. J Alloys Compd 625:158–163

    Article  Google Scholar 

  16. Shen LF, Wang J, Xu GY, Li HS, Dou H, Zhang XG (2015) NiCo2S4 Nanosheets Grown on Nitrogen-Doped Carbon Foams as an Advanced Electrode for Supercapacitors. Adv Energy Mater. doi:10.1002/aenm.201400977

    Google Scholar 

  17. Hu W, Chen RQ, Xie W, Zou LL, Qin N, Bao DH (2014) CoNi2S4 nanosheet arrays supported on nickel foams with ultrahigh capacitance for aqueous asymmetric supercapacitor applications. ACS Appl Mater Interfaces 6:19318–19326

    Article  Google Scholar 

  18. Chen HC, Jiang JJ, Zhang L, Wan HZ, Qi T, Xia DD (2013) Highly conductive NiCo2S4 urchin-like nanostructures for high-rate pseudocapacitors. Nanoscale 5:8879–8883

    Article  Google Scholar 

  19. Zhu YR, Wu ZB, Jing MJ, Yang XM, Song WX, Ji XB (2015) Mesoporous NiCo2S4 nanoparticles as high-performance electrode materials for supercapacitors. J Power Sources 273:584–590

    Article  Google Scholar 

  20. Park SH, Sun YK, Park KS, Nahm KS, Lee YS, Yoshio M (2002) Synthesis and electrochemical properties of lithium nickel oxysulfide (LiNiSyO2−y) material for lithium secondary batteries. Electrochim Acta 47:1721–1726

    Article  Google Scholar 

  21. Wang H, Guo JL, Qing C, Sun DM, Wang BX, Tang YW (2014) Novel topotactically transformed carbon-CoO-NiO-NiCo2O4 nanosheet hybrid hetero-structured arrays as ultrahigh performance supercapacitors. Chem Commun 50:8697–8700

    Article  Google Scholar 

  22. Takahashi H, Kaneko N, Miwa K (1982) Raman and infrared studies of the structure of the dithionite ion in aqueous solution and force-constants of S2O 2−x type ions. Spectrochim Acta A 38:1147–1153

    Article  Google Scholar 

  23. Wang H, Wang C, Qing C, Sun DM, Wang BX, Qu G, Sun M, Tang YW (2015) Construction of carbon-nickel cobalt sulphide hetero-structured arrays on nickel foam for high performance asymmetric supercapacitors. Electrochim Acta 174:1104–1112

    Article  Google Scholar 

  24. Bantignies JL, Deabate S, Righi A, Rols S, Hermet P, Sauvajol JL, Henn F (2008) New insight into the vibrational behavior of nickel hydroxide and oxyhydroxide using inelastic neutron scattering, far/mid-infrared and Raman spectroscopies. J Phys Chem C 112:2193–2201

    Article  Google Scholar 

  25. Surendran S, Vijaya Sankar K, John Berchmans L, Kalai Selvan R (2015) Polyol synthesis of α-NiS particles and its physico-chemical properties. Mater Sci Semicond Process 33:16–23

    Article  Google Scholar 

  26. Zhu Y, Pu X, Song W, Wu Z, Zhou Z, He X, Lu F, Jing M, Tang B, Ji X (2014) High capacity NiCo2O4 nanorods as electrode materials for supercapacitor. J Alloys Compd 617:988–993

    Article  Google Scholar 

  27. Yang JQ, Guo W, Li D, Qin Q, Zhang J, Wei CY, Fan HM, Wu LY, Zheng WJ (2014) Hierarchical porous NiCo2S4 hexagonal plates: formation via chemical conversion and application in high performance supercapacitors. Electrochim Acta 144:16–21

    Article  Google Scholar 

  28. Yu L, Zhang L, Wu HB, Lou XW (2014) Formation of NixCo3−xS4 hollow nanoprisms with enhanced pseudocapacitive properties. Angew Chem Int Ed 53:3711–3714

    Article  Google Scholar 

  29. Zhang X, Zhao YQ, Xu CL (2014) Surfactant dependent self-organization of Co3O4 nanowires on Ni foam for high performance supercapacitors: from nanowire microspheres to nanowire paddy fields. Nanoscale 6:3638–3646

    Article  Google Scholar 

  30. Zhu T, Zheng SJ, Chen YG, Luo J, Guo HB, Chen YE (2014) Improvement of hydrothermally synthesized MnO2 electrodes on Ni foams via facile annealing for supercapacitor applications. J Mater Sci 49:6118–6126. doi:10.1007/s10853-014-8343-8

    Article  Google Scholar 

  31. Cai DP, Wang DD, Wang CX, Liu B, Wang LL, Liu Y, Li QH, Wang TH (2015) Construction of desirable NiCo2S4 nanotube arrays on nickel foam substrate for pseudocapacitors with enhanced performance. Electrochim Acta 151:35–41

    Article  Google Scholar 

  32. Fan HJ, Gösele U, Zacharias M (2007) Formation of nanotubes and hollow nanoparticles based on Kirkendall and diffusion processes: a review. Small 3:1660–1671

    Article  Google Scholar 

  33. Huang JC, Zhu JT, Cheng K, Xu Y, Cao DX, Wang GL (2012) Preparation of Co3O4 nanowires grown on nickel foam with superior electrochemical capacitance. Electrochim Acta 75:273–278

    Article  Google Scholar 

  34. Gao YY, Chen SL, Cao DX, Wang GL, Yin JL (2010) Electrochemical capacitance of Co3O4 nanowire arrays supported on nickel foam. J Power Sources 195:1757–1760

    Article  Google Scholar 

  35. Liu Y, Zhang JN, Wang SP, Wang KX, Chen ZM, Xu Q (2014) Facilely constructing 3D porous NiCo2S4 nanonetworks for high-performance supercapacitors. New J Chem 38:4045–4048

    Article  Google Scholar 

  36. Shen LF, Che Q, Li HS, Zhang XG (2014) Mesoporous NiCo2O4 nanowire arrays grown on carbon textiles as binder-free flexible electrodes for energy storage. Adv Func Mater 24:2630–2637

    Article  Google Scholar 

  37. Brousse T, Toupin M, Dugas R, Athouël L, Crosnier O, Bélanger D (2006) Crystalline MnO2 as possible alternatives to amorphous compounds in electrochemical supercapacitors. J Electrochem Soc 153:A2171–A2180

    Article  Google Scholar 

  38. Huang M, Zhao XL, Li F, Zhang LL, Zhang YX (2015) Facile synthesis of ultrathin manganese dioxide nanosheets arrays on nickel foam as advanced binder-free supercapacitor electrodes. J Power Sources 277:36–43

    Article  Google Scholar 

  39. Su Z, Yang C, Xie BH, Lin ZY, Zhang ZX, Liu JP, Li BH, Kang FY, Wong CP (2014) Scalable fabrication of MnO2 nanostructure deposited on free-standing Ni nanocone arrays for ultrathin, flexible, high-performance micro-supercapacitor. Energy Environ Sci 7:2652–2659

    Article  Google Scholar 

  40. Su YZ, Xiao K, Li N, Liu ZQ, Qiao SZ (2014) Amorphous Ni(OH)2 @ three-dimensional Ni core-shell nanostructures for high capacitance pseudocapacitors and asymmetric supercapacitors. J Mater Chem A 2:13845–13853

    Article  Google Scholar 

  41. Xu ZW, Li Z, Tan XH, Holt CMB, Zhang L, Amirkhiz BS, Mitlin D (2012) Supercapacitive carbon nanotube-cobalt molybdate nanocomposites prepared via solvent-free microwave synthesis. RSC Adv 2:2753–2755

    Article  Google Scholar 

  42. Wang HL, Holt CMB, Li Z, Tan XH, Amirkhiz B, Xu ZW, Olsen B, Stephenson T, Mitlin D (2012) Graphene-nickel cobaltite nanocomposite asymmetrical supercapacitor with commercial level mass loading. Nano Res 5:605–617

    Article  Google Scholar 

  43. Li Z, Xu ZW, Wang HW, Ding J, Zahiri B, Holt CMB, Tan XH, Mitlin D (2014) Colossal pseudocapacitance in a high functionality-high surface area carbon anode doubles the energy of an asymmetric supercapacitor. Energy Environ Sci 7:1708–1718

    Article  Google Scholar 

  44. Chen HC, Jiang JJ, Zhao YD, Zhang L, Guo DQ, Xia DD (2015) One-pot synthesis of porous nickel cobalt sulphides: tuning the composition for superior pseudocapacitance. J Mater Chem A 3:428–437

    Article  Google Scholar 

  45. Li YH, Zhang YF, Li YJ, Wang ZY, Fu HY, Zhang XN, Chen YH, Zhang HZ, Li XF (2014) Unveiling the dynamic capacitive storage mechanism of Co3O4 @NiCo2O4 hybrid nanoelectrodes for supercapacitor applications. Electrochim Acta 145:177–184

    Article  Google Scholar 

  46. Yuan LY, Lu XH, Xiao X, Zhai T, Dai JJ, Zhang FC, Hu B, Wang X, Gong L, Chen J, Hu CG, Tong YX, Zhou J, Wang ZL (2012) Flexible solid-state supercapacitors based on carbon nanoparticles/MnO2 nanorods hybrid structure. ACS Nano 6:656–661

    Article  Google Scholar 

Download references

Acknowledgements

The study is primarily supported by Shanghai Eastern-scholar program and Shanghai Pujiang Program, China. The authors acknowledge the support from the Instrumental Analysis and Research Center of Shanghai University. The electron microscopy work of T. Hu (with J. Luo) is partially supported by the ONR via a MURI Grant No. N00014-11-1-0678, and J. Luo also acknowledges partial supports from NSF for his research on tailoring the surfaces (Grant No. DMR-1320615 for 2013-15) and interfaces (Grant No. CMMI-1436976 for 2014-17) of inorganic materials for energy storage applications.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yigang Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, T., Zhang, G., Hu, T. et al. Synthesis of NiCo2S4-based nanostructured electrodes supported on nickel foams with superior electrochemical performance. J Mater Sci 51, 1903–1913 (2016). https://doi.org/10.1007/s10853-015-9497-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9497-8

Keywords

Navigation