Skip to main content
Log in

Preparation, heat-enabled shape variation, and cargo manipulation of polymer-based micromotors

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this paper, we report the facile fabrication of a sheet-like polymer-based micromotor through the combination of spin coating, self-assembly, and sonication techniques. By carefully adjusting the construction conditions, such as the solution concentration, spin coating speed, and the sonication time, the size of the resulting micromotor can be finely tuned. The utilization of the polymeric materials inside a micromotor brings several advantages, such as the thermal property and the encapsulation of functional materials. As a consequence, the resulting micromotors can not only undergo shape variation from sheets to spheres at an elevated temperature but also exhibit the magnetic response based on the encapsulated magnetic nanoparticles. Furthermore, by combining these two different properties, a new strategy to realize the controlled cargo capture, transport and release based on the polymer’s softening property is proposed in this work. The low cost, easy processing, and versatile functions make current micromotor, an attractive candidate for practical applications, such as targeted drug delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sanchez S, Soler L, Katuri J (2015) Chemically powered micro- and nanomotors. Angew Chem Int Ed 54:1414–1444

    Article  Google Scholar 

  2. Gao W, Wang J (2014) The environmental impact of micro/nanomachines: a review. ACS Nano 8:3170–3180

    Article  Google Scholar 

  3. Wang W, Duan WT, Ahmed S, Mallouk TE, Sen A (2013) Small power: autonomous nano- and micromotors propelled by self-generated gradients. Nano Today 8:531–554

    Article  Google Scholar 

  4. Abdelmohsen LKEA, Peng F, Tu YF, Wilson DA (2014) Micro- and nano-motors for biomedical applications. J Mater Chem B 2:2395–2408

    Article  Google Scholar 

  5. Moo JGS, Pumera M (2015) Chemical energy powered nano/micro/macromotors and the environment. Chem Eur J 21:58–72

    Article  Google Scholar 

  6. Guix M, Mayorga-Martinez CC, Merkoci A (2014) Nano/micromotors in (bio)chemical science applications. Chem Rev 114:6285–6322

    Article  Google Scholar 

  7. van den Heuvel MGL, Dekker C (2007) Motor proteins at work for nanotechnology. Science 317:333–336

    Article  Google Scholar 

  8. Paxton WF, Kistler KC, Olmeda CC, Sen A, St Angelo SK, Cao YY, Mallouk TE, Lammert PE, Crespi VH (2004) Catalytic nanomotors: autonomous movement of striped nanorods. J Am Chem Soc 126:13424–13431

    Article  Google Scholar 

  9. Kline TR, Paxton WF, Mallouk TE, Sen A (2005) Catalytic nanomotors: remote-controlled autonomous movement of striped metallic nanorods. Angew Chem Int Ed 44:744–746

    Article  Google Scholar 

  10. Gao W, Sattayasamitsathit S, Orozco J, Wang J (2013) Efficient bubble propulsion of polymer-based microengines in real-life environments. Nanoscale 5:8909–8914

    Article  Google Scholar 

  11. Gao W, Sattayasamitsathit S, Orozco J, Wang J (2011) Highly efficient catalytic microengines: template electrosynthesis of polyaniline/platinum microtubes. J Am Chem Soc 133:11862–11864

    Article  Google Scholar 

  12. Wu ZG, Wu YJ, He WP, Lin XK, Sun JM, He Q (2013) Self-propelled polymer-based multilayer nanorockets for transportation and drug release. Angew Chem Int Ed 52:7000–7003

    Article  Google Scholar 

  13. Wu YJ, Wu ZG, Lin XK, He Q, Li JB (2012) Autonomous movement of controllable assembled Janus capsule motors. ACS Nano 6:10910–10916

    Google Scholar 

  14. Li JX, Zhang J, Gao W, Huang GS, Di ZF, Liu R, Wang J, Mei YF (2013) Dry-released nanotubes and nanoengines by particle-assisted rolling. Adv Mater 25:3715–3721

    Article  Google Scholar 

  15. Mei YF, Solovev AA, Sanchez S, Schmidt OG (2011) Rolled-up nanotech on polymers: from basic perception to self-propelled catalytic microengines. Chem Soc Rev 40:2109–2119

    Article  Google Scholar 

  16. Gao W, Pei A, Dong RF, Wang J (2014) Catalytic iridium-based Janus micromotors powered by ultralow levels of chemical fuels. J Am Chem Soc 136:2276–2279

    Article  Google Scholar 

  17. Solovev AA, Mei YF, Urena EB, Huang GS, Schmidt OG (2009) Catalytic microtubular jet engines self-propelled by accumulated gas bubbles. Small 5:1688–1692

    Article  Google Scholar 

  18. He YP, Wu JS, Zhao YP (2007) Designing catalytic nanomotors by dynamic shadowing growth. Nano Lett 7:1369–1375

    Article  Google Scholar 

  19. Catchmark JM, Subramanian S, Sen A (2005) Directed rotational motion of microscale objects using interfacial tension gradients continually generated via catalytic reactions. Small 1:202–206

    Article  Google Scholar 

  20. Sengupta S, Ibele ME, Sen A (2012) Fantastic voyage: designing self-powered nanorobots. Angew Chem Int Ed 51:8434–8445

    Article  Google Scholar 

  21. Orozco J, Cortes A, Cheng GZ, Sattayasamitsathit S, Gao W, Feng XM, Shen YF, Wang J (2013) Molecularly imprinted polymer-based catalytic micromotors for selective protein transport. J Am Chem Soc 135:5336–5339

    Article  Google Scholar 

  22. Dong B, Zhou T, Zhang H, Li CY (2013) Directed self-assembly of nanoparticles for nanomotors. ACS Nano 7:5192–5198

    Article  Google Scholar 

  23. Magdanz V, Stoychev G, Ionov L, Sanchez S, Schmidt OG (2014) Stimuli-responsive microjets with reconfigurable shape. Angew Chem Int Ed 53:2673–2677

    Article  Google Scholar 

  24. Mou FZ, Chen CR, Zhong Q, Yin YX, Ma HR, Guan JG (2014) Autonomous motion and temperature-controlled drug delivery of Mg/Pt-poly(N-isopropylacrylamide) Janus micromotors driven by simulated body fluid and blood plasma. ACS Appl Mater Interfaces 6:9897–9903

    Article  Google Scholar 

  25. Sundararajan S, Lammert PE, Zudans AW, Crespi VH, Sen A (2008) Catalytic motors for transport of colloidal cargo. Nano Lett 8:1271–1276

    Article  Google Scholar 

  26. Gao W, Kagan D, Pak OS, Clawson C, Campuzano S, Chuluun-Erdene E, Shipton E, Fullerton EE, Zhang LF, Lauga E, Wang J (2012) Cargo-towing fuel-free magnetic nanoswimmers for targeted drug delivery. Small 8:460–467

    Article  Google Scholar 

  27. Balasubramanian S, Kagan D, Hu CMJ, Campuzano S, Lobo-Castanon MJ, Lim N, Kang DY, Zimmerman M, Zhang LF, Wang J (2011) Micromachine-enabled capture and isolation of cancer cells in complex media. Angew Chem Int Ed 50:4161–4164

    Article  Google Scholar 

  28. Campuzano S, Orozco J, Kagan D, Guix M, Gao W, Sattayasamitsathit S, Claussen JC, Merkoci A, Wang J (2012) Bacterial isolation by lectin-modified microengines. Nano Lett 12:396–401

    Article  Google Scholar 

  29. Gao W, Feng XM, Pei A, Gu YE, Li JX, Wang J (2013) Seawater-driven magnesium based Janus micromotors for environmental remediation. Nanoscale 5:4696–4700

    Article  Google Scholar 

  30. Liu LM, Liu M, Su YJ, Dong YG, Zhou W, Zhang LN, Zhang H, Dong B, Chi LF (2015) Tadpole-like artificial micromotor. Nanoscale 7:2276–2280

    Article  Google Scholar 

  31. Hedfors C, Ostmark E, Malmstrom E, Hult K, Martinelle M (2005) Thiol end-functionalization of poly(ε-caprolactone), catalyzed by Candida Antarctica lipase B. Macromolecules 38:647–649

    Article  Google Scholar 

  32. Toshima N, Kuriyama M, Yamada Y, Hirai H (1981) Colloidal platinum catalyst for light-induced hydrogen evolution from water—a particle-size effect. Chem Lett 10:793–796

    Article  Google Scholar 

  33. Wang XD, Duan YQ, Li CX, Lu Y (2015) Synthesis, self-assembly, and formation of polymer vesicle hydrogels of thermoresponsive copolymers. J Mater Sci 50:3541–3548. doi:10.1007/s10853-015-8911-6

    Google Scholar 

  34. Ohzono T, Nishikawa T, Shimomura M (2004) One-step fabrication of polymer thin films with lithographic bas-relief micro-pattern and self-organized micro-porous structure. J Mater Sci 39:2243–2247. doi:10.1023/B:JMSC.0000017799.20962.4f

    Article  Google Scholar 

  35. Kotov NA (2010) Inorganic nanoparticles as protein mimics. Science 330:188–189

    Article  Google Scholar 

  36. Neouze MA (2013) Nanoparticle assemblies: main synthesis pathways and brief overview on some important applications. J Mater Sci 48:7321–7349. doi:10.1007/s10853-013-7542-z

    Article  Google Scholar 

  37. Love JC, Estroff LA, Kriebel JK, Nuzzo RG, Whitesides GM (2005) Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem Rev 105:1103–1169

    Article  Google Scholar 

  38. Dong B, Wang WD, Miller DL, Li CY (2012) Polymer-single-crystal@nanoparticle nanosandwich for surface enhanced Raman spectroscopy. J Mater Chem 22:15526–15529

    Article  Google Scholar 

  39. Zhang H, Dong B, Zhou T, Li CY (2012) Directed self-assembly of hetero-nanoparticles using a polymer single crystal template. Nanoscale 4:7641–7645

    Article  Google Scholar 

  40. Moshfegh AZ (2009) Nanoparticle catalysts. J Phys D 42:233001

    Article  Google Scholar 

  41. Ismagilov RF, Schwartz A, Bowden N, Whitesides GM (2002) Autonomous movement and self-assembly. Angew Chem Int Ed 41:652–654

    Article  Google Scholar 

  42. Paxton WF, Baker PT, Kline TR, Wang Y, Mallouk TE, Sen A (2006) Catalytically induced electrokinetics for motors and micropumps. J Am Chem Soc 128:14881–14888

    Article  Google Scholar 

  43. Michelin S, Lauga E, Bartolo D (2013) Spontaneous autophoretic motion of isotropic particles. Phys Fluids 25:061701

    Article  Google Scholar 

  44. Majumdar A, Marchetti MC, Virga EG (2014) Perspectives in active liquid crystals. Philos Trans A 372:20130372

    Article  Google Scholar 

  45. Choi WY, Lee CM, Park HJ (2006) Development of biodegradable hot-melt adhesive based on poly-ε-caprolactone and soy protein isolate for food packaging system. Lwt-Food Sci Technol 39:591–597

    Article  Google Scholar 

  46. Dong B, Miller DL, Li CY (2012) Polymer single crystal as magnetically recoverable support for nanocatalysts. J Phys Chem Lett 3:1346–1350

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant No. 21304064), the Natural Science Foundation of Jiangsu Province (Grant No. BK20130292), a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), the Fund for Excellent Creative Research Teams of Jiangsu Higher Education Institutions, and the project sponsored by SRF for ROCS, SEM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Dong.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Liu, M., Dong, Y. et al. Preparation, heat-enabled shape variation, and cargo manipulation of polymer-based micromotors. J Mater Sci 51, 1496–1503 (2016). https://doi.org/10.1007/s10853-015-9470-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9470-6

Keywords

Navigation