Skip to main content

Advertisement

Log in

Allotropic phase transformation and photoluminescence of germanium nanograins processed by high-pressure torsion

  • 50th Anniversary
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

We report on allotropic phase transformation and nanograin refinement of Ge by severe plastic deformation using high-pressure torsion (HPT) under a pressure of 24 GPa. No appreciable formation of metastable phases occurred under compression prior to torsion, while a diamond cubic Ge-I phase and a tetragonal Ge-III phase were observed in the HPT-processed samples. The formation of the Ge-III phase was enhanced by introduction of shear strain. TEM observations revealed that HPT-processed samples consisted of micro- and nanograins. It was indicated that grain refinement occurred due to the introduction of high density of lattice defects in metallic Ge-II during HPT processing, and then Ge-II transformed not only back to Ge-I but also to metastable Ge-III upon unloading. The Ge-III phase reversely transformed to Ge-I by intense Ar-ion laser irradiation or by thermal annealing. No appreciable photoluminescence (PL) was observed from the HPT-processed sample, while a broad PL peak in the range of 600–800 nm appeared after intense laser irradiation. A similar PL peak was also observed from thermally annealed samples. These results suggest that the appearance of the PL peak arises from Ge-I nanograins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Pérez-Prado MT, Zhilyaev AP (2009) First experimental observation of shear induced hcp to bcc transformation in pure Zr. Phys Rev Lett 102:175504

    Article  Google Scholar 

  2. Edalati K, Horita Z, Yagi S, Matsubara E (2009) Allotropic phase transformation of pure zirconium by high-pressure torsion. Mater Sci Eng A 523:277–281

    Article  Google Scholar 

  3. Edalati K, Matsubara E, Horita Z (2009) Processing pure Ti by high-pressure torsion in wide ranges of pressures and strain. Metall Mater Trans A 40:2079–2086

    Article  Google Scholar 

  4. Straumal BB, Mazilkin AA, Baretzky B, Schütz G, Rabkin E, Valiev RZ (2012) Accelerated diffusion and phase transformations in CoCu alloys driven by the severe plastic deformation. Mater Trans 53:63–71

    Article  Google Scholar 

  5. Wentorf RH Jr, Kasper JS (1963) Two new forms of silicon. Science 139:338–339

    Article  Google Scholar 

  6. Bundy FP, Kasper JS (1963) A new dense form of solid germanium. Science 139:340–341

    Article  Google Scholar 

  7. Mujica A, Rubio A, Muñoz A, Needs RJ (2003) High-pressure phases of group-IV, III–V, and II–VI compounds. Rev Mod Phys 75:863–912

    Article  Google Scholar 

  8. Crain J, Ackland GJ, Maclean JR, Piltz RO, Hatton PD, Pawley GS (1994) Reversible pressure-induced structural transitions between metastable phases of silicon. Phys Rev B 50:13043–13046

    Article  Google Scholar 

  9. Ruffell S, Sears K, Bradby JE, Williams JS (2011) Room temperature writing of electrically conductive and insulating zones in silicon by nanoindentation. Appl Phys Lett 98:052105

    Article  Google Scholar 

  10. Menoni CS, Hu JZ, Spain IL (1986) Germanium at high pressures. Phys Rev B 34:362–368

    Article  Google Scholar 

  11. Joannopoulos JD, Cohen ML (1973) Electronic properties of complex crystalline and amorphous phases of Ge and Si. I. Density of states and band structures. Phys Rev B 7:2644–2657

    Article  Google Scholar 

  12. Mujica A, Needs RJ (1993) First-principles calculations of the structural properties, stability, and band structure of complex tetrahedral phases of germanium: ST12 and BC8. Phys Rev B 48:17010–17017

    Article  Google Scholar 

  13. Malone BD, Cohen ML (2012) Electronic structure, equation of state, and lattice dynamics of low-pressure Ge polymorphs. Phys Rev B 86:054101

    Article  Google Scholar 

  14. Kailer A, Nickel KG, Gogotsi YG (1999) Raman microspectroscopy of nanocrystalline and amorphous phases in hardness indentations. J Raman Spectrosc 30:939–946

    Article  Google Scholar 

  15. Oliver DJ, Bradby JE, Williams JS, Swain MV, Munroe P (2009) Rate-dependent phase transformations in nanoindented germanium. J Appl Phys 105:126101

    Article  Google Scholar 

  16. Valiev RZ, Islamgaliev RK, Alexandrov IV (2000) Bulk nanostructured materials from severe plastic deformation. Prog Mater Sci 45:103–189

    Article  Google Scholar 

  17. Valiev RZ, Estrin Y, Horita Z, Langdon TG, Zehetbauer MJ, Zhu YT (2006) Producing bulk ultrafine-grained materials by severe plastic deformation. JOM 58:33–39

    Article  Google Scholar 

  18. Zhilyaev AP, Langdon TG (2008) Using high-pressure torsion for metal processing: fundamentals and applications. Prog Mater Sci 53:893–979

    Article  Google Scholar 

  19. Edalati K, Lee S, Horita Z (2012) Continuous high-pressure torsion using wires. J Mater Sci 47:473–478. doi:10.1007/s10853-011-5822-z

    Article  Google Scholar 

  20. Cubero-Sesin JM, Horita Z (2013) Strengthening of Al through addition of Fe and by processing with high-pressure torsion. J Mater Sci 48:4713–4722. doi:10.1007/s10853-012-6935-8

    Article  Google Scholar 

  21. Cubero-Sesin JM, In H, Arita M, Iwaoka H, Horita Z (2014) High-pressure torsion for fabrication of high-strength and high-electrical conductivity Al micro-wires. J Mater Sci 49:6550–6557. doi:10.1007/s10853-014-8240-1

    Article  Google Scholar 

  22. Alhamidi A, Horita Z (2014) Application of high-pressure torsion to Al-6 %Cu-0.4 %Zr alloy for ultrafine-grain refinement and superplasticity. J Mater Sci 49:6689–6695. doi:10.1007/s10853-014-8362-5

    Article  Google Scholar 

  23. Iwaoka H, Horita Z (2015) High-pressure torsion of thick Cu and Al–Mg–Sc ring samples. J Mater Sci 50:4888–4897. doi:10.1007/s10853-015-9033-x

    Article  Google Scholar 

  24. Islamgaliev RK, Kuzel R, Mikov SN, Igo AV, Burianek J, Chmelik F, Valiev RZ (1999) Structure of silicon processed by severe plastic deformation. Mater Sci Eng, A 266:205–210

    Article  Google Scholar 

  25. Ikoma Y, Hayano K, Edalati K, Saito K, Guo Q, Horita Z (2012) Phase transformation and nanograin refinement of silicon by processing through high-pressure torsion. Appl Phys Lett 101:121908

    Article  Google Scholar 

  26. Ikoma Y, Hayano K, Edalati K, Saito K, Guo Q, Horita Z, Aoki T, Smith DJ (2014) Fabrication of nanograined silicon by high-pressure torsion. J Mater Sci 49:6565–6569. doi:10.1007/s10853-014-8250-z

    Article  Google Scholar 

  27. Ikoma Y, Ejiri Y, Hayano K, Saito K, Guo Q, Horita Z (2014) Nanograin formation of GaAs by high-pressure torsion. Philos Mag Lett 94:1–8

    Article  Google Scholar 

  28. Islamgaliev RK, Kuzel R, Obraztsova ED, Burianek J, Chmelik F, Valiev RZ (1998) TEM, XRD and Raman scattering of germanium processed by severe deformation. Mater Sci Eng, A 249:152–157

    Article  Google Scholar 

  29. Straumal BB, Gornakova AS, Mazilkin AA, Fabrichnaya OB, Kriegel MJ, Baretzky B, Jiang JZ, Dobatkin SV (2012) Phase transformations in the severely plastically deformed Zr–Nb alloys. Mater Lett 81:225–228

    Article  Google Scholar 

  30. Straumal BB, Gornakova AS, Fabrichnaya OB, Kriegel MJ, Mazilkin AA, Baretzky B, Gusak AM, Dobatkin SV (2012) Effective Temperature of High Pressure Torsion in Zr-Nb Alloys. High Temp Mater Proc 31:339–350

    Article  Google Scholar 

  31. Maeda Y, Tsukamoto N, Yazawa Y, Kanemitsu Y, Masumoto Y (1991) Visible photoluminescence of Ge microcrystals embedded in SiO2 glassy matrices. Appl Phys Lett 59:3168–3170

    Article  Google Scholar 

  32. Maeda Y (1995) Visible photoluminescence from nanocrystallite Ge embedded in a glassy SiO2 matrix: evidence in support of the quantum-confinement mechanism. Phys Rev B 51:1658–1670

    Article  Google Scholar 

  33. Takeoka S, Fujii M, Hayashi S, Yamamoto K (1998) Size-dependent near-infrared photoluminescence from Ge nanocrystals embedded in SiO2 matrices. Phys Rev B 58:7921–7925

    Article  Google Scholar 

  34. Olijnyk H, Jephcoat AP (1999) Effect of pressure on Raman spectra of metastable phases of Si and Ge. Phys Stat Sol B 211:413–420

    Article  Google Scholar 

  35. Kartopu G, Bayliss SC, Hummel RE, Ekinci Y (2004) Simultaneous micro-Raman and photoluminescence study of spark-processed germanium: report on the origin of the orange photoluminescence emission band. J Appl Phys 95:3466–3472

    Article  Google Scholar 

  36. Nelmes RJ, McMahon MI, Wright NG, Allan DR, Loveday JS (1993) Stability and crystal structure of BC8 germanium. Phys Rev B 48:9883–9886

    Article  Google Scholar 

  37. Jang J, Lance MJ, Wen S, Pharr GM (2005) Evidence for nanoindentation-induced phase transformations in germanium. Appl Phys Lett 86:131907

    Article  Google Scholar 

  38. Voronin GA, Pantea C, Zerda TW, Zhang J, Wang L, Zhao Y (2003) In situ X-ray diffraction study of germanium at pressures up to 11 GPa and temperatures up to 950 K. J Phys Chem Solid 64:2113–2119

    Article  Google Scholar 

  39. Zacharias M, Fauchet PM (1997) Blue luminescence in films containing Ge and GeO2 nanocrystals: the role of defects. Appl Phys Lett 71:380–382

    Article  Google Scholar 

  40. Niquet YM, Allan G, Delerue C, Lannoo M (2000) Quantum confinement in germanium nanocrystals. Appl Phys Lett 77:1182–1184

    Article  Google Scholar 

  41. Kartopu G, Karavanskii VA, Serincan U, Turan R, Hummel RE, Ekinci Y, Gunnæs A, Finstad TG (2005) Can chemically etched germanium or germanium nanocrystals emit visible photoluminescence? Phys Stat Sol A 202:1472–1476

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the assistance of Mr. Fabi Zhang of Saga University for micro-Raman measurements. This work was partly supported by a Grant-in-Aid for Scientific Research from the JSPS Japan, on Innovative Areas “Bulk Nanostructured Metals” (Nos. 22102004, 25102708), and partly supported by Grant-in-Aid for Scientific Research (S) (No. 26220909). This study used facilities of severe plastic deformation in the International Research Center on Giant Straining for Advanced Materials (IRC-GSAM) at Kyushu University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshifumi Ikoma.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ikoma, Y., Toyota, T., Ejiri, Y. et al. Allotropic phase transformation and photoluminescence of germanium nanograins processed by high-pressure torsion. J Mater Sci 51, 138–143 (2016). https://doi.org/10.1007/s10853-015-9328-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9328-y

Keywords

Navigation