Skip to main content
Log in

Textured BaTiO3 by templated grain growth and electrophoretic deposition

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

[001]-Oriented barium titanate (BaTiO3) ceramics were prepared by templated grain growth using [001]-oriented plate-like template BaTiO3 particles, synthesized via the molten salt method. Platelets synthesized in a 2-step or 3-step molten salt were used in two platelet concentrations. The platelets were aligned in the green body via electrophoretic deposition. The use of different templates and concentrations played an important role in the alignment, the grain growth, and the properties of the ceramics. The highest degree of texture was observed in the ceramic textured with 1 wt% platelets made by the 3-step molten salt method. The addition of template particles limited the discontinuous grain growth and reduced the grain size. Texture enhanced the dielectric and piezoelectric properties of BaTiO3 ceramics, but the bismuth contamination associated with platelet addition was responsible for a high conductivity. The Curie temperature (T C) was 2–4 °C higher in the textured ceramics than in the randomly oriented equivalents (130 °C). The d 33 values increased with increasing crystal orientation and reached a maximum of 274 pC/N for the BaTiO3 textured with 1 wt% platelets made by the 2-step molten salt method, versus the d 33 of 186 pC/N for the randomly oriented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Rodel J, Jo W, Seifert KTP, Anton EM, Granzow T, Damjanovic D (2009) Perspective on the development of lead-free piezoceramics. J Am Ceram Soc 92:1153–1177

    Article  Google Scholar 

  2. Messing GL, Trolier-McKinstry S, Sabolsky EM, Duran C, Kwon S, Brahmaroutu B, Park P, Yilmaz H, Rehrig PW, Eitel KB, Suvaci E, Seabaugh M, Oh KS (2004) Templated grain growth of textured piezoelectric ceramics. Crit Rev Solid State Mater Sci 29:45–96

    Article  Google Scholar 

  3. Aksel E, Jones JL (2010) Advances in lead-free piezoelectric materials for sensors and actuators. Sensors 10:1935–1954

    Article  Google Scholar 

  4. Jaffe H (1958) Piezoelectric ceramics. J Am Ceram Soc 41:494–498

    Article  Google Scholar 

  5. Rehrig PW, Park SE, Trolier-McKinstry S, Messing GL, Jones B, Shrout TR (1999) Piezoelectric properties of zirconium-doped barium titanate single crystals grown by templated grain growth. J Appl Phys 86:1657–1661

    Article  Google Scholar 

  6. Wan F, Han JG, Zhu ZY (2008) Dielectric response in ferroelectric BaTiO3. Phys Lett A 372:2137–2140

    Article  Google Scholar 

  7. Richter T, Denneler S, Schuh C, Suvaci E, Moos R (2008) Textured PMN-PT and PMN-PZT. J Am Ceram Soc 91:929–933

    Article  Google Scholar 

  8. Sabolsky EM, Kwon S, Suvaci E, James AR, Messing GL, Trolier-McKinstry S (2001) Dielectric and electromechanical properties of 001-textured (0.68)Pb(Mg1/3Nb2/3)-(O.32)PbTiO3, vols. I and II. In: Proceedings of the 2001 12th IEEE international symposium on applications of ferroelectrics. pp 393–396

  9. Saito Y, Takao H, Tani T, Nonoyama T, Takatori K, Homma T, Nagaya T, Nakamura M (2004) Lead-free piezoceramics. Nature 432:84–87

    Article  Google Scholar 

  10. Park SE, Wada S, Cross LE, Shrout TR (1999) Crystallographically engineered BaTiO3 single crystals for high-performance piezoelectrics. J Appl Phys 86:2746–2750

    Article  Google Scholar 

  11. Wada S, Takeda K, Muraishi T, Kakemoto H, Tsurum T, Kimura T (2007) Preparation of [110] grain oriented barium titanate ceramics by templated grain growth method and their piezoelectric properties. Jpn J Appl Phys 1-Regul Pap Brief Commun Rev Pap 46:7039–7043

    Google Scholar 

  12. Seabaugh MM, Cheney GL, Hasinska K, Azad AM, Sabolsky EM, Swartz SL, Dawson WJ (2004) Development of a templated grain growth system for texturing piezoelectric ceramics. J Intell Mater Syst Struct 15:209–214

    Article  Google Scholar 

  13. Zhang L, Vleugels J, Van der Biest O (2010) Fabrication of textured alumina by orienting template particles during electrophoretic deposition. J Eur Ceram Soc 30:1195–1202

    Article  Google Scholar 

  14. Suvaci E, Messing GL (2000) Critical factors in the templated grain growth of textured reaction-bonded alumina. J Am Ceram Soc 83:2041–2048

    Article  Google Scholar 

  15. Zhao W, Ya W, Xin W, Zhao LED, Zhou HP (2009) Fabrication of Na0.5Bi0.5TiO3-BaTiO3-textured ceramics templated by plate-like Na0.5Bi0.5TiO3 particles. J Am Ceram Soc 92:1607–1609

    Article  Google Scholar 

  16. Van der Biest OO, Vandeperre LJ (1999) Electrophoretic deposition of materials. Annu Rev Mater Sci 29:327–352

    Article  Google Scholar 

  17. Besra L, Liu M (2007) A review on fundamentals and applications of electrophoretic deposition (EPD). Prog Mater Sci 52:1–61

    Article  Google Scholar 

  18. Sabolsky EM, James AR, Kwon S, Trolier-McKinstry S, Messing GL (2001) Piezoelectric properties of 〈001〉 textured Pb(Mg1/3Nb2/3)O3-PbTiO3 ceramics. Appl Phys Lett 78:2551–2553

    Article  Google Scholar 

  19. Lv DY, Zuo RZ (2013) Evolution of crystallographic grain orientation and anisotropic properties of (K0.5Na0.5)NbO3 ceramics using BaTiO3 templates by reactive templated grain growth. J Alloy Compd 560:62–66

    Article  Google Scholar 

  20. Remeika JP (1954) A method of growing barium titanate single crystals. J Am Chem Soc 76:940–941

    Article  Google Scholar 

  21. Liu D, Yan YK, Zhou HP (2007) Synthesis of micron-scale platelet BaTiO3. J Am Ceram Soc 90:1323–1326

    Article  Google Scholar 

  22. Su S, Zuo RZ, Lv DY, Fu J (2012) Synthesis and characterization of (001) oriented BaTiO3 platelets through a topochemical conversion. Powder Technol 217:11–15

    Article  Google Scholar 

  23. Su S, Zuo RZ (2012) Fabrication and electrical properties of 0.94Na(0.5)Bi(0.5)TiO(3)-0.06BaTiO(3) textured ceramics by RTGG method using micrometer sized BaTiO3 plate-like templates. J Alloy Compd 525:133–136

    Article  Google Scholar 

  24. Zhou LQ, Vilarinho PM, Baptista JL (1999) Solubility of bismuth oxide in barium titanate. J Am Ceram Soc 82:1064–1066

    Article  Google Scholar 

  25. Lotgering FK (1959) Topotactical reactions with ferrimagnetic oxides having hexagonal crystal structures. 1. J Inorg Nucl Chem 9:113–123

    Article  Google Scholar 

  26. Ozen M, Mertens M, Schroeven M, Snijkers F, Cool P (2012) Preparation of barium titanate powders and colloidal processing in a strong (9.4 T) magnetic field. Mater Lett 67:154–157

    Article  Google Scholar 

  27. Mainprice D, Hielscher R, Schaeben H (2011) Calculating anisotropic physical properties from texture data using the MTEX open-source package, vol. 360. Geological Society, London, Special Publications, pp 175–192

  28. Wang H, Zhang QM, Cross LE (1993) A high-sensitivity, phase-sensitive d33 meter for complex piezoelectric constant measurement. Jpn J Appl Phys Part 2-Lett 32:L1281–L1283

    Article  Google Scholar 

  29. Sawyer CB, Tower CH (1930) Rochelle salt as a dielectric. Phys Rev 35:269–273

    Article  Google Scholar 

  30. English AT, Chin GY (1965) On variation of wire texture with stacking fault energy in fcc metals and alloys. Acta Metall 13:1013–1016

    Article  Google Scholar 

  31. Kirby KW, Wechsler BA (1991) Phase-relations in the barium titanate-titanium oxide system. J Am Ceram Soc 74:1841–1847

    Article  Google Scholar 

  32. Glaister RM, Kay HF (1960) An investigation of the cubic-hexagonal transition in barium titanate. Proc Phys Soc London 76:763–771

    Article  Google Scholar 

  33. Hennings DFK, Janssen R, Reynen PJL (1987) Control of liquid-phase-enhanced discontinuous grain-growth in barium-titanate. J Am Ceram Soc 70:23–27

    Article  Google Scholar 

  34. Kolar D, Kunaver U, Recnik A (1998) Exaggerated anisotropic grain growth in hexagonal barium titanate ceramics. Phys Status Solidi A 166:219–230

    Article  Google Scholar 

  35. Zheng SJ, Ma XL, Yamamoto T, Ikuhara Y (2013) Atomistic study of abnormal grain growth structure in BaTiO3 by transmission electron microscopy and scanning transmission electron microscopy. Acta Mater 61:2298–2307

    Article  Google Scholar 

  36. Jung YI, Yoon DY, Kang SJL (2009) Coarsening of polyhedral grains in a liquid matrix. J Mater Res 24:2949–2959

    Article  Google Scholar 

  37. Heo YH, Jeon SC, Fisher JG, Choi SY, Hur KH, Kang SJL (2011) Effect of step free energy on delayed abnormal grain growth in a liquid phase-sintered BaTiO3 model system. J Eur Ceram Soc 31:755–762

    Article  Google Scholar 

  38. Moulson AJ, Herbert JM (2003) Ceramic conductors. In: Electroceramics. Wiley, pp 135–242

  39. Cao WW, Randall CA (1996) Grain size and domain size relations in bulk ceramic ferroelectric materials. J Phys Chem Solids 57:1499–1505

    Article  Google Scholar 

  40. Damjanovic D (1998) Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics. Rep Prog Phys 61:1267–1324

    Article  Google Scholar 

  41. Cvejin K, Mojic B, Samardzic N, Srdic VV, Stojanovic GM (2013) Dielectric studies of barium bismuth titanate as a material for application in temperature sensors. J Mater Sci 24:1243–1249. doi:10.1007/s10854-012-0914-3

    Google Scholar 

  42. Hiremath BV, Newnham RE, Cross LE (1992) Barrier layer capacitor using barium bismuth plumbate and barium plumbate. J Am Ceram Soc 75:2953–2958

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support of the Academische Stichting Leuven, the fund for Scientific Technological Research in Industry (IWT) under contract SBO-PROMAG (60056), and support of the Research Fund of KU Leuven under Project GOA/2008/007.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Despoina Vriami.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vriami, D., Damjanovic, D., Vleugels, J. et al. Textured BaTiO3 by templated grain growth and electrophoretic deposition. J Mater Sci 50, 7896–7907 (2015). https://doi.org/10.1007/s10853-015-9322-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9322-4

Keywords

Navigation