Skip to main content
Log in

Multiscale modeling of sensory properties of Co–Ni–Al shape memory particles embedded in an Al metal matrix

  • Multiscale Modeling and Experiment
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The concept of utilizing ferromagnetic shape memory alloys as embedded sensory particles in aluminum alloys for damage detection is discussed. When embedded in a material, a shape memory particle can undergo an acoustically detectable solid-state phase transformation when the local strain reaches a critical value. The emitted acoustic signal can be used for real-time damage detection. To study the transition behavior of the sensory particle inside a metal matrix under load, a simulation approach based on a coupled atomistic-continuum model is used. The simulation results indicate a strong dependence of the particle’s pseudoelastic response on its crystallographic orientation with respect to the loading direction. These results serve as a basis for understanding the efficacy and variability in the sensory particle transformation to detect damage processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. MD uses 5-th order Gear predictor corrector integration scheme [10].

References

  1. Wallace TA, Smith SW, Piascik RS, Horne MR, Messick PL, Alexa JA, Glaessgen EH, Hailer BT (2010) Strain-detecting composite materials. Patent application publication, Pub. No. US2010/0190026 A1, 29 July 2010

  2. NIST Interatomic Potentials Repository. http://www.ctcms.nist.gov/potentials/

  3. Purja Pun GP, Mishin Y (2009) Development of an interatomic potential for the Ni–Al system. Philos Mag 89:3245–3267

    Article  Google Scholar 

  4. Mishin Y (2004) Atomistic modeling of the γ and γ′ phases of the Ni-Al system. Acta Mater 52:1451–1467

    Article  Google Scholar 

  5. Mishin Y, Farkas D, Mehl MJ, Papaconstantopoulos DA (1999) Interatomic potentials for monoatomic metals from experimental data and ab initio calculations. Phys Rev B 59:3393–3407

    Article  Google Scholar 

  6. Purja Pun GP, Mishin Y (2012) Embedded-atom potential for hcp and fcc cobalt. Phys Rev B 86:134116

    Article  Google Scholar 

  7. Frenkel D, Smit B (2002) Understanding molecular simulation: from algorithms to applications, 2nd edn. Academic Press, San Diego

    Google Scholar 

  8. Karaca HE, Karaman I, Lagoudas DC, Maier HJ, Chumlyakov YI (2003) Recoverable stress-induced martensitic transformation in a ferromagnetic CoNiAl alloy. Scripta Mater 49:831–836

    Article  Google Scholar 

  9. Mayer D, Maier HJ, Dadda J, Karaman I, Karaca HE (2006) Thermally and stress-induced martensitic transformation in Co-Ni-Al ferromagnetic shape memory alloy single crystals. Mat Sci Eng A 438–440:875–878

    Article  Google Scholar 

  10. Parrinello M, Rahman A (1981) Polymorphic transitions in single crystals; a new molecular dynamics method. J Appl Phys 52:7182–7190

    Article  Google Scholar 

  11. Cormier J, Rickman JM, Delph TJ (2001) Stress calculation in atomistic simulations of perfect and imperfect solids. J Appl Phys 89:99–104

    Article  Google Scholar 

  12. Plimpton S, Battaile C, Chandross M, Holm L, Thompson A, Tikare V, Wagner G, Webb E, Zhou X, Cardona CG, Slepoy A (2009) Crossing the mesoscale no-man’s land via parallel kinetic Monte Carlo. Technical Report p. 85, Sandia Technical Report SAND2009-6226

  13. Sadigh B, Erhart P, Stukowski A, Caro A, Martinez E, Zepeda-Ruiz L (2012) Scalable parallel Monte Carlo algorithm for atomistic simulations of precipitation in alloys. Phys Rev B 85:184203

    Article  Google Scholar 

  14. Belytschko T, Liu WK, Moran B (2000) Nonlinear finite elements for continua and structures. Wiley, New York, p 300

    Google Scholar 

  15. Saether E, Yamakov V, Glaessgen EH (2009) An embedded statistical coupling method for coupling molecular dynamics with finite element analyses. Int J Numer Methods Eng 78:1292–1319

    Article  Google Scholar 

  16. Yamakov V, Warner DH, Zamora RJ, Saether E, Curtin WA, Glaessgen EH (2014) Investigation of crack tip dislocation emission in aluminum using multiscale molecular dynamics simulation and continuum modeling. J Mech Phys Solids 65:35–53

    Article  Google Scholar 

  17. Nose S (1984) A unified formulation of the constant temperature molecular dynamics method. J Chem Phys 81:511–519

    Article  Google Scholar 

  18. Stukowski A (2010) Visualization and analysis of atomistic simulation data with OVITO-the Open Visualization Tool. Modell Simul Mater Sci Eng 18:015012

    Article  Google Scholar 

  19. Clarke AS, Jonsson H (1993) Structural changes accompanying densification of random hard-sphere packings. Phys Rev E 47:3975

    Article  Google Scholar 

  20. Henderson A (2012) ParaView guide, a parallel visualization application. Kitware Inc., New york. ISBN-13:978-1-1930934-24-5, p. 506

Download references

Acknowledgements

V. Yamakov is sponsored through cooperative agreement NCC-1-02043 with the National Institute of Aerospace. G. P. Purja Pun and Y. Mishin were supported by the National Aeronautics and Space Administration through the NASA Langley Research Center (cooperative agreement NRA # NNX08AC07A). The use of FEAWDX software for explicit FE integration, developed by G. Heber is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Yamakov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamakov, V., Hochhalter, J.D., Leser, W.P. et al. Multiscale modeling of sensory properties of Co–Ni–Al shape memory particles embedded in an Al metal matrix. J Mater Sci 51, 1204–1216 (2016). https://doi.org/10.1007/s10853-015-9153-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9153-3

Keywords

Navigation