Skip to main content
Log in

Fabrication of dense (Bi1/2K1/2)TiO3 ceramics using hydrothermally derived fine powders

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

(Bi1/2K1/2)TiO3 (BKT) powders were synthesized by a hydrothermal reaction using anatase TiO2 and Bi(OH)3 under a strong alkaline condition of [KOH] = 12 M. The reaction at 200 °C for 3 h provided a mixture of BKT and Ti-rich fibrous amorphous phases. The single-phase BKT powder with a particle size of 200 nm was successfully obtained by applying a two-step temperature profile for the reaction, which consists of temperature rising up to 160 °C and subsequent holing at 110 °C for 6 h. It was found that washing treatment of the hydrothermal BKT powder with deionized water caused leaching of K+ ions, resulting in the thermal decomposition of the powder during high-temperature heat treatment. It was a key to use ethanol for the washing treatment for preventing the K+ ion leaching. The ceramic sample fabricated by the ordinary firing of the hydrothermal BKT powder at 1060 °C for 2 h had a high density of 94.5 % and showed superior dielectric, ferroelectric, and piezoelectric properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Buhrer CF (1962) Some properties of bismuth perovskites. J Chem Phys 36:798–803

    Article  Google Scholar 

  2. Sasaki A, Chiba T, Mamiya Y, Otsuki Etsuo (1999) Dielectric and piezoelectric properties of (Bi0.5Na0.5)TiO3-(Bi0.5K0.5)TiO3 systems. Jpn J Appl Phys 38:5564–5567

    Article  Google Scholar 

  3. Zuo R, Fang X, Ye C, Li L (2007) Phase transitional behavior and piezoelectric properties of lead-free (Na0.5K0.5)NbO3-(Bi0.5K0.5)TiO3 ceramics. J Am Ceram Soc 90:2424–2428

    Article  Google Scholar 

  4. Matsuo H, Noguchi Y, Miyayama M, Suzuki M, Watanabe A, Sasabe S, Ozaki T, Mori S, Torii S, Kamiyama T (2010) Structural and piezoelectric properties of high-density (Bi0.5K0.5)TiO3-BiFeO3 ceramics. J Appl Phys 108:104103

    Article  Google Scholar 

  5. Hiruma Y, Aoyagi R, Nagata H, Takenaka T (2005) Ferroelectric and piezoelectric properties of (Bi1/2K1/2)TiO3 ceramics. Jpn J Appl Phys 44:5040–5044

    Article  Google Scholar 

  6. Hiruma Y, Nagata H, Takenaka T (2007) Grain-size effect on electrical properties of (Bi1/2K1/2)TiO3 ceramics. Jpn J Appl Phys 46:1081–1084

    Article  Google Scholar 

  7. Tabuchi K, Nagata H, Takenaka T (2013) Fabrication and electrical properties of potassium excess and poor (Bi1/2K1/2)TiO3 ceramics. J Ceram Soc Jpn 121:623–626

    Article  Google Scholar 

  8. Nagata H, Saitoh M, Hiruma Y, Takenaka T (2010) Fabrication and piezoelectric properties of textured (Bi1/2K1/2)TiO3 ferroelectric ceramics. Jpn J Appl Phys 49:09MD08

    Article  Google Scholar 

  9. Rao PVB, Ramana EV, Sankaram TB (2009) Electrical properties of K0.5Bi0.5TiO3. J Alloys Compd 467:293–298

    Article  Google Scholar 

  10. Nagata H, Tabuchi K, Takenaka T (2013) Fabrication and electrical properties of multilayer ceramic actuator using lead-free (Bi1/2K1/2)TiO3. Jpn J Appl Phys 52:09KD05

    Article  Google Scholar 

  11. König J, Spreitzer M, Jančar B, Suvorov D, Samardžija Z, Popovič A (2009) The thermal decomposition of K0.5Bi0.5TiO3 ceramics. J Eur Ceram Soc 29:1695–1701

    Article  Google Scholar 

  12. Tabuchi K, Inoue Y, Nagata H, Takenaka T (2013) Effects of starting raw materials for fabricating dense (Bi1/2K1/2)TiO3 ceramics. Ferroelectrics 457:124–130

    Article  Google Scholar 

  13. Yoshimura M, Byrappa K (2007) Hydrothermal processing of materials: past, present and future. J Mater Sci 43:2085–2103. doi:10.1007/s10853-007-1853-x

    Article  Google Scholar 

  14. Lencka MM, Oledzka M, Riman RE (2000) Hydrothermal synthesis of sodium and potassium bismuth titanates. Chem Mater 12:1323–1330

    Article  Google Scholar 

  15. Kanie K, Numamoto Y, Tsukamoto S, Sasaki T, Nakaya M, Tani J, Takahashi H, Muramatsu A (2011) Size-controlled hydrothermal synthesis of bismuth sodium and bismuth potassium titanates fine particles and application to lead-free piezoelectric ceramics. Mater Trans 52:1396–1401

    Article  Google Scholar 

  16. Hou L, Hou Y-D, Song X-M, Zhu M-K, Wang H, Yan H (2006) Sol-gel-hydrothermal synthesis and sintering of K0.5Bi0.5TiO3 nanowires. Mater Res Bull 41:1330–1336

    Article  Google Scholar 

  17. Lim JB, Suvorov D, Kim M-H, Jeon J-H (2012) Hydrothermal synthesis and characterization of (Bi, K)TiO3 ferroelectrics. Mater Lett 67:286–288

    Article  Google Scholar 

  18. Masaki N, Uchida S, Yamane H, Sato T (2000) Hydrothermal synthesis of potassium titanates in Ti-KOH-H2O system. J Mater Sci 35:3307–3311. doi:10.1023/A:1004835724752

    Article  Google Scholar 

  19. Barnum DW (1983) Hydrolysis of cations. Formation constants and standard free energies of formation of hydroxy complexes. Inorg Chem 22:2297–2305

    Article  Google Scholar 

  20. Lencka MM, Riman RE (1993) Synthesis of lead titanate: thermodynamic modeling and experimental verification. J Am Ceram Soc 76:2649–2659

    Article  Google Scholar 

  21. Maeda T, Hemsel T, Morita T (2011) Improved process for hydrothermal lead-free piezoelectric powders and performances of sintered (K0.48Na0.52)NbO3 ceramics. Jpn J Appl Phys 50:07HC01

    Article  Google Scholar 

  22. Yoon D-H, Lee BI, Badheka P, Wang X (2003) Barium ion leaching from barium titanate powder in water. J Mater Sci 14:165–169. doi:10.1023/A:1022306024907

    Google Scholar 

  23. Wang C-M, Wang J-F (2008) Aurivillius phase potassium bismuth titanate: K0.5Bi4.5Ti4O15. J Am Ceram Soc 91:918–923

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by a Grant-in-Aid for Research Activity Start-up (No. 25889049) from the Japan Society for the Promotion of Science (JSPS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manabu Hagiwara.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hagiwara, M., Fujihara, S. Fabrication of dense (Bi1/2K1/2)TiO3 ceramics using hydrothermally derived fine powders. J Mater Sci 50, 5970–5977 (2015). https://doi.org/10.1007/s10853-015-9144-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9144-4

Keywords

Navigation