Skip to main content
Log in

Facile synthesis and photocatalytic performance of Mg2SnO4/SnO2 heterostructures

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Highly crystalline MgSn(OH)6 cubic and polyhedral nanoparticles were synthesized via hydrothermal method by adjusting the ethanol/water ratio. Mg2SnO4/SnO2 nanoparticles have been successfully obtained by subsequent calcining, which maintain the original morphologies of the precursor with shrank size and rough surface. The structural properties of Mg2SnO4/SnO2 heterostructures were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, UV–Vis absorption spectroscopy, and N2 adsorption/desorption isotherms. The photocatalytic activity of the Mg2SnO4/SnO2 nanoparticles was further evaluated by the degradation of methylene blue (MB) under UV illumination. The obtained results revealed that Mg2SnO4/SnO2 polyhedral nanoparticles have excellent performance on photocatalytic degradation of MB. It is assumed that the red shift of band gap, oxygen vacancies, and higher specific surface areas of polyhedral Mg2SnO4/SnO2 nanocomposites contribute to the enhancement in the photocatalytic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Guo ZL, Sa BS, Pathak B, Zhou J, Ahuja R, Sun ZM (2014) Band gap engineering in huge-gap semiconductor SrZrO3 for visible-light photocatalysis. Int J Hydrog Energy 39:2042–2048

    Article  Google Scholar 

  2. Qu XF, Xie DD, Gao L, Cao LX, Du FL (2015) Synthesis and characterization of TiO2/WO3 composite nanotubes for photocatalytic applications. J Mater Sci 50:21–27. doi:10.1007/s10853-014-8441-7

    Article  Google Scholar 

  3. Yin R, Luo QZ, Wang DS, Sun HT, Li YY (2014) SnO2/g-C3N4 photocatalyst with enhanced visible-light photocatalytic activity. J Mater Sci 49:6067–6073

    Article  Google Scholar 

  4. Liu ZY, Zhang XT, Nishimoto S, Murakami T, Fujishima A (2008) Efficient photocatalytic degradation of gaseous acetaldehyde by highly ordered TiO2 nanotube arrays. Environ Sci Technol 42:8547–8551

    Article  Google Scholar 

  5. Yuan Q, Wu ZF, Jin YK, Xu LS, Xiong F, Ma YS, Huang WX (2013) Photocatalytic cross-coupling of methanol and formaldehyde on a rutile TiO2(110) surface. J Am Chem Soc 135:5212–5219

    Article  Google Scholar 

  6. Guo M, Xie KY, Liu XL, Zhou LM, Huang HT (2014) A strategy to reduce the angular dependence of a dye-sensitized solar cell by coupling to a TiO2 nanotube photonic crystal. Nanoscale 6:13060–13067

    Article  Google Scholar 

  7. Tanabe I, Ozaki K (2014) Consistent changes in electronic states and photocatalytic activities of metal (Au, Pd, Pt)-modified TiO2 studied by far-ultraviolet spectroscopy. Chem Commun 50:2117–2119

    Article  Google Scholar 

  8. Kim K, Thiyagarajan P, Ahn HJ, Kim HI, Jang JH (2013) Optimization for visible light photocatalytic water splitting: gold-coated and surface-textured TiO2 inverse opal nano-networks. Nanoscale 5:6254–6260

    Article  Google Scholar 

  9. Chalasani R, Vasudevan S (2013) Cyclodextrin-functionalized Fe3O4@TiO2: reusable, magnetic nanoparticles for photocatalytic degradation of endocrine-disrupting chemicals in water supplies. ACS Nano 7:4093–4104

    Article  Google Scholar 

  10. Zhu YY, Liu YF, Lv YH, Ling Q, Liu D, Zhu YF (2014) Enhancement of photocatalytic activity for BiPO4 via phase junction. J Mater Chem A 2:13041–13048

    Article  Google Scholar 

  11. Mukherji A, Seger B, Lu M, Wang LZ (2011) Nitrogen doped Sr2Ta2O7 coupled with graphene sheets as photocatalysts for increased photocatalytic hydrogen production. ACS Nano 5:3483–3492

    Article  Google Scholar 

  12. Yan XD, Zou CW, Gao XD, Gao W (2012) ZnO/TiO2 core–brush nanostructure: processing, microstructure and enhanced photocatalytic activity. J Mater Chem 22:5629–5640

    Article  Google Scholar 

  13. Zhang X, Li XH, Shao CL, Li JH, Zhang MY, Zhang P, Wang KX, Lu N, Liu YC (2013) One-dimensional hierarchical heterostructures of In2S3 nanosheets on electrospun TiO2 nanofibers with enhanced visible photocatalytic activity. J Hazard Mater 26:892–900

    Article  Google Scholar 

  14. Li MY, Hu Y, Xie SL, Huang YC, Tong YX, Lu XH (2014) Heterostructured ZnO/SnO2−x nanoparticles for efficient photocatalytic hydrogen production. Chem Commun 50:4341–4343

    Article  Google Scholar 

  15. Shi L, Dai YM (2013) Synthesis and photocatalytic activity of Zn2SnO4 nanotube arrays. J Mater Chem A 1:12981–12986

    Article  Google Scholar 

  16. Li XY, Zhu ZR, Zhao QD, Wang LZ (2011) Photocatalytic degradation of gaseous toluene over ZnAl2O4 prepared by different methods: a comparative study. J Hazard Mater 186:2089–2096

    Article  Google Scholar 

  17. Shahid M, Liu JL, Ali Z, Shakir I, Warsi MF, Parveen R, Nadeem M (2013) Photocatalytic degradation of methylene blue on magnetically separable MgFe2O4 under visible light irradiation. Mater Chem Phys 139:566–571

    Article  Google Scholar 

  18. Deng C, Zhang S, Wu YX (2015) Hydrothermal-assisted synthesis of the Na7V4(P2O7)4(PO4)/C nanorod and its fast sodium intercalation chemistry in aqueous rechargeable sodium batteries. Nanoscale 7:487–491

    Article  Google Scholar 

  19. Sahana MB, Vasu S, Sasikala N, Anandan S, Sepehri-Amin H, Sudakar C, Gopalan R (2014) Raman spectral signature of Mn-rich nanoscale phase segregations in carbon free LiFe 1-x Mn x PO4 prepared by hydrothermal technique. RSC Adv 4:64429–64437

    Article  Google Scholar 

  20. Xiao T, Tang YW, Jia ZY, Feng SL (2009) Synthesis of SnO2/Mg2SnO4 nanoparticles and their electrochemical performance for use in Li-ion battery electrodes. Electrochim Acta 54:2396–2401

    Article  Google Scholar 

  21. Yin JZ, Gao F, Wei CZ, Lu QY (2012) Controlled growth and applications of complex metal oxide ZnSn(OH)6 polyhedra. Inorg Chem 51:10990–10995

    Article  Google Scholar 

  22. Lu ZG, Tang YG, Chen LM (2004) Shape-controlled synthesis and characterization of BaZrO3 microcrystals. J Cryst Growth 266:539–544

    Article  Google Scholar 

  23. Hu XY, Tang YW, Xiao T, JianG J, Jia ZY, Li DW, Li BH, Luo LJ (2010) Rapid synthesis of single-crystalline SrSn(OH)6 nanowires and the performance of SrSnO3 nanorods used as anode materials for Li-ion battery. J Phys Chem C 114:947–952

    Article  Google Scholar 

  24. Thomas B, Skariah B (2015) Spray deposited Mg-doped SnO2 thin film LPG sensor: XPS and EDX analysis in relation to deposition temperature and doping. J Alloy Compd 625:231–240

    Article  Google Scholar 

  25. Supamas D, Mayuree J, Thammarat K, Joydeep D (2013) Enhancement of photocatalytic degradation of methyl orange by supported zinc oxide nanorods/zinc stannate (ZnO/ZTO) on porous substrates. Ind Eng Chem Res 52:13629–13636

    Article  Google Scholar 

  26. Lv KZ, Li J, Qing XX, Li WZ, Chen QY (2011) Synthesis and photo-degradation application of WO3/TiO2 hollow spheres. J Hazard Mater 189:329–335

    Article  Google Scholar 

  27. Nagaraju G, Manjunath K, Ravishankar TN, Ravikumar BS, Nagabhushan H, Ebeling G, Dupont J (2013) Ionic liquid-assisted hydrothermal synthesis of TiO2 nanoparticles and its application in photocatalysis. J Mater Sci 48:8420–8426. doi:10.1007/s10853-013-7654-5

    Article  Google Scholar 

  28. Liu C, Ni YH, Zhang L, Guo F, Wu TT (2014) Simple solution-combusting synthesis of octahedral ZnFe2O4 nanocrystals and additive promoted photocatalytic performance. RSC Adv 4:47402–47408

    Article  Google Scholar 

  29. Wang MY, Sun L, Cai JH, Huang P, Su YF (2013) Lin CJ (2013) A facile hydrothermal deposition of ZnFe2O4 nanoparticles on TiO2 nanotube arrays for enhanced visible light photocatalytic activity. J Mater Chem A 1:12082–12087

    Article  Google Scholar 

  30. Li JQ, Liu ZX, Zhu ZF (2014) Magnetically separable ZnFe2O4, Fe2O3/ZnFe2O4 and ZnO/ZnFe2O4 hollow nanospheres with enhanced visible photocatalytic properties. RSC Adv 4:51302–51308

    Article  Google Scholar 

  31. Zhu XD, Zhang F, Wang MJ, Ding JJ, Sun S, Bao J, Gao C (2014) Facile synthesis, structure and visible light photocatalytic activity of recyclable ZnFe2O4/TiO2. Appl Surf Sci 319:83–89

    Article  Google Scholar 

  32. Lei BF, Lin B, Wang XJ, Li WL (2006) Green emitting long lasting phosphorescence (LLP) properties of Mg2SnO4: Mn2+ phosphor. J Lumin 118:173–178

    Article  Google Scholar 

  33. Zhang L, He YM, Ye P, Wu Y, Wu TH (2013) Visible light photocatalytic activities of ZnFe2O4 loaded by Ag3VO4 heterojunction composites. J Alloys Compd 549:105–113

    Article  Google Scholar 

  34. Shi L, Yin PQ, Dai YM (2013) Synthesis and photocatalytic performance of ZnIn2S4 nanotubes and nanowires. Langmuir 29:2818–12822

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 61106070), the Applied Basic Research Programs of Wuhan city (No. 2014010101010006), and the Key Project of Natural Science Foundation of Hubei Province of China (Grant No. 2013CFA043).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Juan Xiong or Haoshuang Gu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, Y., Xiong, J., Zhang, W. et al. Facile synthesis and photocatalytic performance of Mg2SnO4/SnO2 heterostructures. J Mater Sci 50, 5865–5872 (2015). https://doi.org/10.1007/s10853-015-9136-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9136-4

Keywords

Navigation