Skip to main content
Log in

Correlation between microstructures of SiC-reinforced titanium matrix composite and liquid route processing parameters

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A new procedure for filamentary metal matrix composite processing is described here. It consists in running carbon-coated SiC filaments through a liquid titanium bath in levitation. The liquid metal/carbon interaction must be significant enough to enable filament wetting and sufficiently low to avoid composite embrittlement. To insure both requirements, different configurations of the initial ceramic filament can be used: (1) SiC(C) filament free of any other coating, (2) SiC(C) filament coated with a carbide obtained by reactive chemical vapour deposition (R-CVD), or (3) SiC(C) previously coated by a first metal layer. In order to choose the best conditions for developing the process, the different processing configurations were studied through modelling and numerical simulations of the filament/matrix interaction. The microstructure of the interfacial zone between filament and matrix was investigated through SEM and Auger electron spectroscopy (AES) analyses. The microstructure of the interfacial zone between filament and matrix was investigated through SEM and AES analyses. The results show that in comparison to the first processing configuration, the best way to obtain filamentary composite semi-products without excessive fibre/matrix interaction is to use the second configuration. However, the latter requires preliminary R-CVD operations, while the third configuration leads to moderate carbon embrittlement effect without requiring additional equipment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Salzar RS (1999) Design considerations for rotating laminated metal-matrix-composite shafts. Compos Sci Technol 59(6):883–896

    Article  Google Scholar 

  2. Hooker JA, Doorbar PJ (2000) Metal matrix composites for aeroengines. Mater Sci Technol 16(7–8):725–731

    Article  Google Scholar 

  3. Soumelidis P, Quenisset JM, Naslain R, Stoloff NS (1986) Effect of the filament nature on fatigue crack growth in titanium based composites reinforced by boron, B(B4C) and SiC filaments. J Mater Sci 21(3):895–903. doi:10.1007/BF01117370

    Article  Google Scholar 

  4. Wei W (1992) Interfacial properties of a SiC fibre-reinforced Ti alloy after long-term high-temperature exposure. J Mater Sci 27(7):1801–1810. doi:10.1007/BF01107207

    Article  Google Scholar 

  5. Molliex L, Favre JP, Vassel A, Rabinovitch M (1994) Interface contribution to the SiC-titanium and SiC-aluminium tensile strength prediction—Part I Interface characterization by fragmentation tests. J Mater Sci 29(22):6033–6040. doi:10.1007/BF00366890

    Article  Google Scholar 

  6. Gao Z, Zhao H (1995) Life predictions of metal matrix composite laminates under isothermal and nonisothermal fatigue. J Compos Mater 29(9):1142–1168

    Article  Google Scholar 

  7. Cotterill PJ, Bowen P (1996) Transverse properties of a Ti-6-4 matrix/SiC fibre-reinforced composite under monotonic and cyclic loading. J Mater Sci 31(22):5897–5905. doi:10.1007/BF01152139

    Article  Google Scholar 

  8. Bobet JL, Masuda C, Kagawa Y (1997) Estimation of residual stresses in SiC/Ti-15-3 composites and their relaxation during a fatigue test. J Mater Sci 32(23):6357–6369. doi:10.1023/A:1018665901020

    Article  Google Scholar 

  9. Thomas MP, Winstone MR (1998) Transverse tensile behaviour of fibre reinforced titanium metal matrix composites. J Mater Sci 33(23):5499–5508. doi:10.1023/A:1004435325205

    Article  Google Scholar 

  10. Nicolaou PD, Piehler HR, Saigal S (1992) Experimental and finite-element analytical guidelines for fabricating continuous fiber (scs-6) metal-matrix (ti-6al-4v) composites via the foil fiber foil technique. J Compos Mater 28(17):1694–1722

    Article  Google Scholar 

  11. Hirose A, Matsuhiro Y, Kotoh M, Fukumoto S, Kobayashi KF (1993) Laser-beam welding of SiC fibre-reinforced Ti-6Al-4 V composite. J Mater Sci 28(2):349–355. doi:10.1007/BF00357806

    Article  Google Scholar 

  12. Mackay RA, Brindley PK, Froes FH (1991) Continuous fiber-reinforced titanium aluminide composites. J Miner Met Mater Soc 43(5):23–29

    Article  Google Scholar 

  13. Leucht R, Dudek HJ (1994) Properties of SiC-fiber reinforced titanium-alloys processed by fiber coating and hot isostatic pressing. Mater Sci Eng A 188(1–2):201–210

    Article  Google Scholar 

  14. Sanguinetti Ferreira RA, Arvieu C, Guillaume B, Quenisset JM (2006) Titanium matrix composites processed by continuous binder-powder coating: an alternative fabrication route. Composites A 37(10):1831–1836

    Article  Google Scholar 

  15. Sanguinetti Ferreira RA, Arvieu C, Quenisset JM (2005) Effects of pressure and thermal exposure on the Ti/SiC/C composites produced by continuous binder-powder coating. Scr Mater 53:329–333

    Article  Google Scholar 

  16. Dambrine B, Garnier M, Hamburger J, Honnorat Y, Molliex L (1998) Procédé d’enduction métallique de fibres par voie liquide. Patent 9800644. Jan 1998 A.D

  17. Toloui B (1985) Development of carbon fibre reinforced titanium-copper composites. In: Proceedings of ICCM5 conference, San Diego, July–August, pp 773–777

  18. Cooke CM, Eylon D, Froes FH (1988) Development of rapidly solidified titanium matrix composites. In: Proceedings of sixth world conference on titanium, Cannes (France), June, pp 913–917

  19. Warrier SG, Lin RY (1996) Infrared infiltration and properties of SCS-6/Ti alloy composites. J Mater Sci 31:1821–1828. doi:10.1007/BF00372197

    Article  Google Scholar 

  20. Duda C, Arvieu C, Fromentin JF, Quenisset JM (2004) Microstructural characterization of liquid route processed Ti 6242 coating of SCS-6 filament. Compos A 35:511–517

    Article  Google Scholar 

  21. Feigenblum J (2002) Procédé d’enduction de fibres par voie liquide. PhD Thesis, Grenoble Institute of Technology (France)

  22. Lacoste E, Arvieu C, Afzali MS, Quenisset JM (2009) Heat and mass transfer modeling and simulation during liquid route processing of SiC/Ti filamentary composites. Numer Heat Transf Part A 56:709–726

    Article  Google Scholar 

  23. Smith PR, Gambone ML, Williams DS, Garner DI (1998) Heat treatment effects on SiC fiber. J Mater Sci 33(24):5855–5872. doi:10.1023/A:1004478804694

    Article  Google Scholar 

  24. Ward Y, Young RJ, Shatwell RA (2001) Microstructural study of silicon carbide fibres through the use of Raman microscopy. J Mater Sci 36(1):55–66. doi:10.1023/A:1004830505979

    Article  Google Scholar 

  25. De Ryck A, Quere D (1996) Inertial coating of a fibre. J Fluid Mech 311:219–237

    Article  Google Scholar 

  26. Duda C (2004) Compréhension et amélioration des conditions de couplage par enduction a grande vitesse entre filaments SiCCVD et alliage base titane, PhD Thesis, University Bordeaux 1, n 2864

  27. Massalski TB (1990) Binary alloy diagrams, vol 1, 2nd edn. American Society for Metals, Metals Park, pp 888–891

    Google Scholar 

  28. Arvieu C, Duda C, Franchet JM, Frayssines PE, Fromentin JF and Quenisset JM (2005) Procédé d’enduction métallique de fibres par voie liquide. French Patent 0553008

  29. Metcalfe AG (1974) Fiber reinforced titanium alloys. In: Kreider KG (eds) Metallic matrix composites. Academic Press, New York

Download references

Acknowledgements

The authors wish to thank C. Duda for performing heat treatments and J.M. Franchet (SNECMA – Groupe Safran) for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Lacoste.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lacoste, E., Arvieu, C. & Quenisset, JM. Correlation between microstructures of SiC-reinforced titanium matrix composite and liquid route processing parameters. J Mater Sci 50, 5583–5592 (2015). https://doi.org/10.1007/s10853-015-9108-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9108-8

Keywords

Navigation