Skip to main content
Log in

Bi2S3 microflowers assembled from one-dimensional nanorods with a high photoresponse

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this paper, Bi2S3 microflowers have been successfully synthesized via a facile one-pot hydrothermal method and characterized by X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray analysis, and X-ray photoelectron spectroscopy. Then the Bi2S3 microflowers were deposited on patterned ITO glass substrates by dip-coating to fabricate photodetectors. The photoresponse properties using Bi2S3 microflowers as a representative system show a significantly enhanced conductivity and the current–voltage characteristic exhibit ca. 1.7 orders of magnitude larger than the dark current. The response and decay times are estimated to be ~227 and 880 ms, respectively, indicating that flower-like Bi2S3 may be an excellent candidate for high-speed and high-sensitivity photoelectrical switches and light-sensitive devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zhang YJ, Ye JT, Matsuhashi Y et al (2012) Ambipolar MoS2 thin flake transistors. Nano Lett 12:1136–1140

    Article  Google Scholar 

  2. Late DJ, Huang YK, Liu B et al (2013) Sensing behavior of atomically thin-layered MoS2 transistors. ACS Nano 7:4879–4891

    Article  Google Scholar 

  3. Yin ZY, Li H, Li H et al (2012) Single-layer MoS2 phototransistors. ACS Nano 6:74–80

    Article  Google Scholar 

  4. Huo NJ, Kang J, Wei ZM et al (2014) Novel and enhanced optoelectronic performances of multilayer MoS2–WS2 heterostructure transistors. Adv Funct Mater 24:7025–7031

    Article  Google Scholar 

  5. Wang R, Ruzicka BA, Kumar N et al (2012) Ultrafast and spatially resolved studies of charge carriers in atomically thin molybdenum disulfide. Phys Rev B 86:045406

    Article  Google Scholar 

  6. Yashina LV, Barriga JS, Scholz MR et al (2013) Negligible surface reactivity of topological insulators Bi2Se3 and Bi2Te3 towards oxygen and water. ACS Nano 7:5181–5191

    Article  Google Scholar 

  7. Liu H, Cui HM, Han F et al (2005) Growth of Bi2Se3 nanobelts synthesized through a co-reduction method under ultrasonic irradiation at room temperature. Cryst Growth Des 5:1711–1714

    Article  Google Scholar 

  8. Ma JM, Liu ZF, Lian JB et al (2011) Ionic liquids-assisted synthesis and electrochemical properties of Bi2S3 nanostructures. CrystEngComm 13:3072–3079

    Article  Google Scholar 

  9. Peng XS, Meng GW, Zhang J et al (2011) Electrochemical fabrication of ordered Bi2S3 nanowire arrays. J Phys D 34:3224–3228

    Article  Google Scholar 

  10. Miller DD, Heller A (1976) Semiconductor liquid junction solar cells based on anodic sulphide films. Nature 262:680–681

    Article  Google Scholar 

  11. Xiao GJ, Dong QF, Wang YN et al (2012) One-step solution synthesis of bismuth sulfide (Bi2 S3) with various hierarchical architectures and their photoresponse properties. RSC Adv 2:234–240

    Article  Google Scholar 

  12. Li YP, Wei F, Ma YG et al (2013) Selected-control hydrothermal synthesis and photoresponse properties of Bi2S3micro/nanocrystals. CryEngComm 15:6611–6616

    Article  Google Scholar 

  13. Li HH, Yang J, Zhang JY et al (2012) Facile synthesis of hierarchical Bi2S3 nanostructures for photodetector and gas sensor. RSC Adv 2:6258–6261

    Article  Google Scholar 

  14. Konstantatos G, Levina L, Tang J et al (2008) Sensitive solution-processed Bi2S3 nanocrystalline photodetectors. Nano Lett 8:4002–4006

    Article  Google Scholar 

  15. Suarez R, Nair PK, Kamat PV (1998) Photoelectrochemical behavior of Bi2S3 nanoclusters and nanostructured thin films. Langmuir 14:3236–3241

    Article  Google Scholar 

  16. Li RX, Yang JH, Huo NJ et al (2014) Effecct of electrical contact on the performance of Bi2S3 nanowire photodetectors. ChemPhysChem 15:2510–2516

    Article  Google Scholar 

  17. Chen GH, Yu YQ, Zheng KF et al (2015) Fabrication of ultrathin Bi2 S3 nanosheets for high performance, flexible, visible-NIR photodetectors. Small. doi:10.1002/smll.201403508

    Google Scholar 

  18. Yao K, Gong WW, Hu YF et al (2008) Individual Bi2S3 nanowire-based room-temperature H2 sensor. J Phys Chem C 112:8721–8724

    Article  Google Scholar 

  19. Bao HF, Li CM, Cui XQ et al (2008) Synthesis of a highly ordered single crystalline Bi2S3 nanowire array and its metal/semiconductor/metal back-to-back Schottky diode. Small 4:1125–1129

    Article  Google Scholar 

  20. Rabin O, Perez JM, Grimm J et al (2006) An X-ray computed tomography imaging agent based on long-circulating bismuth sulphide nanoparticles. Nat Mater 5:118–122

    Article  Google Scholar 

  21. Schricker AD, Sigman MB, Korgel BA et al (2005) Electrical transport, Meyer-Neldel rule and oxygen sensitivity of Bi2S3 nanowire. Nanotechnology 16:S508–S513

    Article  Google Scholar 

  22. Zhang B, Ye XC, Hou WY et al (2006) Biomolecule-assisted synthesis and electrochemical hydrogen storage of Bi2S3 flowerlike patterns with well-aligned nanorods. J Phys Chem B 110:8978–8985

    Article  Google Scholar 

  23. Peter LM, Wijayantha KGU, Riley DJ et al (2003) Band-edge tuning in self-assembled layers of Bi2S3 nanoparticles used to photosensitize nanocrystalline TiO2. J Phys Chem B 107:8378–8381

    Article  Google Scholar 

  24. Martinez L, Bernechea M, De-Arquer FP et al (2011) Near IR-sensitive, non-toxic, polymer/nanocrystal solar cells employing Bi2S3 as the electron acceptor. Adv Energy Mater 1:1029–1035

    Article  Google Scholar 

  25. Liao XH, Wang H, Zhu JJ et al (2001) Preparation of Bi2S3 nanorods by microwave irradiation. Mat Res Bull 36:2339–2346

    Article  Google Scholar 

  26. Zhang XH, Lu XH, Shen YQ et al (2011) Three-dimensional WO3 nanostructures on carbon paper: photoelectrochemical property and visible light driven photocatalysis. Chem Commun 47:5804–5806

    Article  Google Scholar 

  27. Lu FY, Li RX, Li Y et al (2015) Improving the field-effect performance of Bi2S3 single nanowires by an asymmetric device fabrication. ChemPhysChem 16:99–103

    Article  Google Scholar 

  28. Andzane J, Kunakova G, Varghese J et al (2015) Photoconductive properties of Bi2S3 nanowires. J Appl Phys 117:064305

    Article  Google Scholar 

  29. Wang H, Zhu JJ, Zhu JM et al (2002) Sonochemical method for the preparation of bismuth sulfide nanorods. J Phys Chem B 106:3848–3854

    Article  Google Scholar 

  30. Wei F, Zhang J, Wang L et al (2006) Solvothermal growth of single-crystal bismuth sulfide nanorods using bismuth particles as source material. Cryst Growth Des 6:1942–1944

    Article  Google Scholar 

  31. Yang Y, Chen J, Wang P et al (2009) Syntheses, growth mechanism, and optical properties of [001] growing Bi2S3 nanorods. J Phys Chem C 113:16009–16014

    Article  Google Scholar 

  32. Shen GZ, Chen D, Tang KB et al (2003) Large-scale synthesis of uniform urchin-like patterns of Bi2S3 nanorods through a rapid polyol process. Chem Phys Lett 370:334–337

    Article  Google Scholar 

  33. Krichevsky O, Stavans J (1993) Correlated Ostwald ripening in two dimensions. Phys Rev Lett 70:1473–1476

    Article  Google Scholar 

  34. Kind H, Yan HQ, Messer B, Law M, Yang PD et al (2002) Nanowire ultraviolet photodetectors and optical switches. Adv Mater 14:158–160

    Article  Google Scholar 

  35. Jie JS, Zhang WJ, Jiang Y et al (2006) Photoconductive characteristics of single-crystal CdS nanoribbons. Nano Lett 6:1887–1892

    Article  Google Scholar 

  36. Li LS, Cao RG, Wang ZJ et al (2009) Template synthesis of hierarchical Bi2E3 (E=S, Se, Te) core-shell microspheres and their electrochemical and photoresponsive properties. J Phys Chem C 113:18075–18081

    Article  Google Scholar 

  37. Tahir AA, Ehsan MA, Mazhar M et al (2010) Photoelectrochemical and photoresponsive properties of Bi2S3 nanotube and nanoparticle thin films. Chem Mater 22:5084–5092

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant No. 61405076, 11304124, 61240056) and the Starting Research Fund from the Jianghan University (2012017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Tian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, Y., Ding, Tt., Zhu, Xl. et al. Bi2S3 microflowers assembled from one-dimensional nanorods with a high photoresponse. J Mater Sci 50, 5443–5449 (2015). https://doi.org/10.1007/s10853-015-9089-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9089-7

Keywords

Navigation