Skip to main content
Log in

Synthesis of TiO2-doped mesoporous nanobioactive glass particles and their cytocompatibility against osteoblast cell line

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

To obtain medically important mesoporous biomaterial, we prepared titanium-doped nanobioactive glass (NBG) particles 55SiO2–(36 − x) CaO–9P2O5xTiO2 (x = 0, 1, 2, and 3 mol%) were prepared by simple sol–gel method. The physicochemical properties of the prepared nanocomposites were analyzed using different characterization techniques. The developed mesoporous nanocomposites showed amorphous nature with globular morphology, with a particle size of approximately 50 nm. The specific surface area of glass nanocomposites doped with TiO2 at different concentrations, namely SCPT0 (0 %), SCPT1 (1 %), SCPT2 (2 %), and SCPT3 (3 %) samples, was 129, 186, 105, and 129 m2 g−1, respectively. In addition, the average pore diameter of the glass series was 33, 18, 27, and 25 nm. The in vitro bioactivity of hydroxyapatite layer formation was confirmed using simulated body fluid. Further, antibacterial property of mesoporous nanocomposites was investigated against Escherichia coli and Staphylococcus aureus. The diameter of the inhibition zone of TiO2-doped nanocomposites against E. coli was found to be 16, 18, and 20 mm. No significant inhibition was found for Ti-free samples against E. coli and S. aureus. The cytotoxicity assay revealed that the prepared NBG particles doped with 1 % TiO2 were nontoxic and showed better cell viability in osteoblast cell line (MG-63) at a concentration of 125 µg ml−1. Therefore, the addition of biomimic metal oxide dopant such as TiO2 in NBGs is an effective approach to develop a highly biocompatible material for bone implant applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Abou Neel EA, Chrzanowski W, Valappil SP, O’Dell LA, Pickup DM, Smith ME, Newport RJ, Knowles JC (2009) Doping of a high calcium oxide metaphosphate glass with titanium dioxide. J Non Cryst Solids 355:991–1000

    Article  Google Scholar 

  2. Prabhu M, Kavitha K, Manivasakan P, Rajendran V, Kulandaivelu P (2013) Synthesis, characterization and biological response of magnesium substituted nanobioactive glass particles for biomedical applications. Ceram Int 39:1683–1694

    Article  Google Scholar 

  3. Jones JR (2013) Review of bioactive glass: from Hench to hybrids. Acta Biomater 9:4457–4486

    Article  Google Scholar 

  4. Hench LL, Thompson I (2010) Twenty-first century challenges for biomaterials. J R Soc Interface 7:S379–S391

    Article  Google Scholar 

  5. Prabhu M, Kavitha K, Suriyaprabha R et al (2013) Preparation and characterization of silver-doped nanobioactive glass particles and their in vitro behaviour for biomedical applications. J Nanosci Nanotech 13:5327–5339

    Article  Google Scholar 

  6. Li Z, Qu Y, Zhang X, Yang B (2009) Bioactive nano-titania ceramics with biomechanical compatibility prepared by doping with piezoelectric BaTiO3. Acta Biomater 5:2189–2195

    Article  Google Scholar 

  7. Kavitha K, Sutha S, Prabhu M, Rajendran V, Jayakumar T (2013) In situ synthesized novel biocompatible titania-chitosan nanocomposites with high surface area and antibacterial activity. Carbohydr Polym 93:731–739

    Article  Google Scholar 

  8. Shah Mohammadi M, Chicatun F, Stähli C, Muja N, Bureau MN, Nazhat SN (2014) Osteoblastic differentiation under controlled bioactive ion release by silica and titania doped sodium-free calcium phosphate-based glass. Colloids Surf B 121:82–91

    Article  Google Scholar 

  9. Dhayal M, Kapoor R, Sistla PG, Pandey RR, Kar S, Saini KK, Pande G (2014) Strategies to prepare TiO2 thin films, doped with transition metal ions, that exhibit specific physicochemical properties to support osteoblast cell adhesion and proliferation. Mater Sci Eng C 37:99–107

    Article  Google Scholar 

  10. Shahadat M, Teng TT, Rafatullah M, Arshad M (2015) Titanium-based nanocomposite materials: a review of recent advances and perspectives. Colloids Surf B 126C:121–137

    Article  Google Scholar 

  11. Kavitha K, Prabhu M, Rajendran V, Manivasankan P, Prabu P, Jayakumar T (2013) Optimization of nano-titania and titania-chitosan nanocomposite to enhance biocompatibility. Curr Nanosci 9:308–317

    Article  Google Scholar 

  12. Martin RA, Moss RM, Lakhkar NJ, Knowles JC, Cuello GJ, Smith ME, Hanna JV, Newport RJ (2012) Structural characterization of titanium-doped Bioglass using isotopic substitution neutron diffraction. Phys Chem Chem Phys 14(45):15807–15815

    Article  Google Scholar 

  13. Lakhkar NJ, Park JH, Mordan NJ, Salih V, Wall IB, Kim HW, King SP, Hanna JV, Martin RA, Addison O, Mosselmans JF, Knowles JC (2012) Titanium phosphate glass microspheres for bone tissue engineering. Acta Biomater 8(11):4181–4190

    Article  Google Scholar 

  14. Asif IM, Shelton RM, Cooper PR, Addison O, Martin RA (2014) In vitro bioactivity of titanium-doped bioglass. J Mater Sci Mater Med 25(8):1865–1873

    Article  Google Scholar 

  15. Monem AS, ElBatal HA, Khalil EMA, Azooz MA, Hamdy YM (2008) In vivo behavior of bioactive phosphate glass-ceramics from the system P2O5-Na2O-CaO containing TiO2. J Mater Sci Mater Med 19:1097–1108

    Article  Google Scholar 

  16. Nan Y, Lee WE, James PF (1992) Crystallization behavior of CaO-P2O5 glass with TiO2, SiO2, and Al2O3 additions. J Am Ceram Soc 75:1641

    Article  Google Scholar 

  17. Chen Q, Miyaji F, Kokubo T, Nakamura T (1999) Apatite formation on PDMS-modified CaO-SiO2-TiO2 hybrids prepared by sol-gel process. Biomaterials 20(12):1127–1132

    Article  Google Scholar 

  18. Kim YS, Linh LT, Park ES, Chin S, Bae G-N, Jurng J (2012) Antibacterial performance of TiO2 ultrafine synthesized by a chemical vapor condensation method: effect of synthesis temperature and precursor vapor concentration. Powder Technol 215–216:195–199

    Article  Google Scholar 

  19. Caballero L, Whitehead KA, Allen NS, Verran J (2009) Inactivation of E.coli on immobilized TiO2 using fluorescent light. J Photochem Photobiol A 202:92–98

    Article  Google Scholar 

  20. Saravanakumar B, Prabhu M, Rajendran V (2013) Electrochemical deposition of 58SiO2-33CaO-9P2O5 nanobioactive glass particles on Ti-6Al-4V alloy for biomedical applications. Int J Appl Ceram Technol. doi:10.1111/ijac.12124

    Google Scholar 

  21. Bielby RC, Christodoulou IS, Pryce RS, Radford WJP, Hench LL, Polak JM (2004) Time- and concentration-dependent effects of dissolution products of 58S sol-gel bioactive glass on proliferation and differentiation of murine and human osteoblasts. Tissue Eng 10:1018–1026

    Article  Google Scholar 

  22. FitzGerald V, Martin RA, Jones JR, Qiu D, Wetherall KM, Moss RM, Newport RJ (2009) Bioactive glass sol-gel foam scaffolds: evolution of nanoporosity during processing and in situ monitoring of apatite layer formation using small- and wide-angle X-ray scattering. J Biomed Mater Res A. 91(1):76–83

    Article  Google Scholar 

  23. Yu B, Turdean-Ionescu CA, Martin RA, Newport RJ, Hanna JV, Smith ME, Jones JR (2012) Effect of calcium source on structure and properties of sol-gel derived bioactive glasses. Langmuir 28(50):17465–17476

    Article  Google Scholar 

  24. Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60:309

    Article  Google Scholar 

  25. Kokubo T, Takadama H (2006) How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27:2907–2915

    Article  Google Scholar 

  26. Bauer A, Kirby WMM, Sherris JC, Turch M (1966) Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol 45:493–496

    Google Scholar 

  27. Rouquerol F, Rouquerol J, Sing K (1999) Chapter 13—General conclusions and recommendations, adsorption by powders and porous solids. Academic Press, Amsterdam, pp 439–447

    Book  Google Scholar 

  28. Yun H-S, Kim S-H, Lee S, Song I-H (2010) Synthesis of high surface area mesoporous bioactive glass nanospheres. Mater Lett 64:1850–1853

    Article  Google Scholar 

  29. Rajendran V, Rajkumar G, Aravindan S, Saravanakumar B (2010) Analysis of physical properties and hydroxyapatite precipitation in vitro of TiO2-containing phosphate-based glass systems. J Am Ceram Soc 93(12):4053

    Article  Google Scholar 

  30. Barbieri L, Bonamartini Corradi A, Leonelli C, Siligardi C, Manfredini T, Carlo Pellacani G (1997) Effect of TiO2 addition on the properties of complex aluminosilicate glasses and glass-ceramics. Mater Res Bull 32(6):637

    Article  Google Scholar 

  31. Uchida M, Kim HM, Kokubo T, Fujibayashi S, Nakamura T (2003) Structural dependence of apatite formation on titania gels in a simulated body fluid. J Biomed Mater Res 64a:164

    Article  Google Scholar 

  32. Ducheyne P, Radin S, King L (1993) The effect of calcium-phosphate ceramic composition and structure on in vitro behavior. I. Dissoultion. J Biomed Mater Res 27:25–34

    Article  Google Scholar 

  33. Ni S, Chang J, Chou L (2008) In vitro studies of novel CaO-SiO2-MgO system composite bioceramics. J Mater Sci Mater Med 19:359–367

    Article  Google Scholar 

  34. Gerhardt L-C, Jell GMR, Boccaccini AR (2007) Titanium dioxide (TiO2) nanoparticles filled polyD, L-lactid acid (PDLLA) matrix composites for bone tissue engineering. J Mater Sci Mater Med 18:1287–1298

    Article  Google Scholar 

  35. Savaiano JK, Webster TJ (2004) Altered responses of chondrocytes to nanophase PLGA/nanophase titania composites. Biomaterials 25:1205–1213

    Article  Google Scholar 

  36. Wooley PH, Schwarz EM (2004) Aseptic loosening. Gene Ther 11:402–407

    Article  Google Scholar 

  37. Talos F, Senila M, Frentiu T, Simon S (2013) Effect of titanium ions on the ion release rate and uptake at the interface of silica based xerogels with simulated body fluid. Corros Sci 72:41–46

    Article  Google Scholar 

  38. Pena J, Izquierdo-Barba I, Martinez A, Vallet-Regi M (2006) New method to obtain chitosan/apatite materials at room temperature. Solid State Sci 8:513–519

    Article  Google Scholar 

  39. Vasconcelos HC (2010) The effect of PO2, 5 and AlO1, 5 additions on structural changes and crystallization behavior of SiO2-TiO2 sol-gel derived glasses and thin films. J Sol Gel Sci Technol 55:126–133

    Article  Google Scholar 

  40. Socrates G (2004) Infrared and raman characteristic group frequencies: tables and charts, 3rd edn. Wiley, Chichester

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support (SR/S2/CMP-0054/2009 dt. 27.09.2010) provided by the Department of Science and Technology (DST), New Delhi, to carry out this research project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Rajendran.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajendran, V., Prabhu, M. & Suriyaprabha, R. Synthesis of TiO2-doped mesoporous nanobioactive glass particles and their cytocompatibility against osteoblast cell line. J Mater Sci 50, 5145–5156 (2015). https://doi.org/10.1007/s10853-015-9047-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9047-4

Keywords

Navigation