Skip to main content

Advertisement

Log in

Synthesis of octahedral and cubic Cu2O microcrystals in sub- and super-critical methanol and their photocatalytic performance

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A simple and potentially scalable sub- and super-critical methanol technique was applied to synthesize cuprous oxide. Cu2O microcrystals with two morphologies were obtained in methanol of subcritical domain by adjusting the feeding methods. The effects of the reaction time, temperature, pressure, and feeding method on the formation of Cu2O microcrystals were investigated. XRD, SEM, and XPS were applied to analyze the composition and morphology of products. Results showed that pure cuprous oxide could be obtained in subcritical methanol of 230 °C, 7.8 MPa for 15 min. The two as-obtained products displayed octahedral and cubic morphology with an average edge length of 4 and 2 μm by solution and solid feeding methods, respectively. The formation and crystal growth mechanism of Cu2O in subcritical methanol were also proposed on the basis of above results. Furthermore, the two microcrystals were employed as catalysts in the photodecomposition of negatively charged molecule methyl orange. Results showed that both microcrystals possessed excellent photocatalytic activities. However, the obvious difference between cubic and octahedral in photocatalytic performance was not found in the scale of micrometer (2–4 μm).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ng CHB, Fan WY (2006) Shape evolution of Cu2O nanostructures via kinetic and thermodynamic controlled growth. J Phys Chem B 110:20801–20807

    Article  Google Scholar 

  2. Tsai YH, Chanda K, Chu YT et al (2014) Direct formation of small Cu2O nanocubes, octahedra, and octapods for efficient synthesis of triazoles. Nanoscale 6:8704–8709

    Article  Google Scholar 

  3. Chanda K, Rej S, Huang MH (2013) Investigation of facet effects on the catalytic activity of Cu2O nanocrystals for efficient regioselective synthesis of 3,5-disubstituted isoxazoles. Nanoscale 5:12494–12501

    Article  Google Scholar 

  4. Xu Y, Wang H, Yu YF et al (2011) Cu2O nanocrystals: surfactant-free room-temperature morphology-modulated synthesis and shape-dependent heterogeneous organic catalytic activities. J Phys Chem C 115:15288–15296

    Article  Google Scholar 

  5. Zhao Y, Wang W, Li Y et al (2014) Hierarchical branched Cu2O nanowires with enhanced photocatalytic activity and stability for H2 production. Nanoscale 6:195–198

    Article  Google Scholar 

  6. Zhang L, Shi J, Liu M et al (2014) Photocatalytic reforming of glucose under visible light over morphology controlled Cu2O: efficient charge separation by crystal facet engineering. Chem Commun 50:192–194

    Article  Google Scholar 

  7. Feng L, Zhang C, Gao G et al (2012) Facile synthesis of hollow Cu2O octahedral and spherical nanocrystals and their morphology-dependent photocatalytic properties. Nanoscale Res Lett 7:276

    Article  Google Scholar 

  8. Hung L-I, Tsung C-K, Huang W et al (2010) Room-temperature formation of hollow Cu2O nanoparticles. Adv Mater 22:1910–1914

    Article  Google Scholar 

  9. Zhong JH, Li GR, Wang ZL et al (2011) Facile electrochemical synthesis of hexagonal Cu2O nanotube arrays and their application. Inorg Chem 50:757–763

    Article  Google Scholar 

  10. Guan L, Pang H, Wang J et al (2010) Fabrication of novel comb-like Cu2O nanorod-based structures through an interface etching method and their application as ethanol sensors. Chem Commun 46:7022–7024

    Article  Google Scholar 

  11. Shin JH, Park SH, Hyun SM et al (2014) Electrochemical flow-based solution-solid growth of the Cu2O nanorod array: potential application to lithium ion batteries. Phys Chem Chem Phys 16:18226–18232

    Article  Google Scholar 

  12. Paolella A, Brescia R, Prato M et al (2013) Colloidal synthesis of cuprite (Cu2O) octahedral nanocrystals and their electrochemical lithiation. ACS Appl Mater Interfaces 5:2745–2751

    Article  Google Scholar 

  13. Poizot P, Laruelle S, Grugeon S et al (2000) Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407:496–499

    Article  Google Scholar 

  14. Sedighi A, Montazer M, Samadi N (2014) Synthesis of nano Cu2O on cotton: morphological, physical, biological and optical sensing characterizations. Carbohydr Polym 110:489–498

    Article  Google Scholar 

  15. Giannousi K, Sarafidis G, Mourdikoudis S et al (2014) Selective synthesis of Cu2O and Cu/Cu2O nps: antifungal activity to yeast saccharomyces cerevisiae and DNA interaction. Inorg Chem 53:9657–9666

    Article  Google Scholar 

  16. Choi DJ, Maeng JS, Ahn KO et al (2014) Synthesis of Cu or Cu2O -polyimide nanocomposites using Cu powders and their optical properties. Nanotechnology 25:375604

    Article  Google Scholar 

  17. Li Q, Xu P, Zhang B et al (2013) Self-supported pt nanoclusters via galvanic replacement from Cu2O nanocubes as efficient electrocatalysts. Nanoscale 5:7397–7402

    Article  Google Scholar 

  18. Huang C, Ye W, Liu Q et al (2014) Dispersed Cu2O octahedrons on h-BN nanosheets for p-nitrophenol reduction. ACS Appl Mater Interfaces 6:14469–14476

    Article  Google Scholar 

  19. Xu H, Ouyang S, Liu L et al (2014) Porous-structured Cu2O/TiO2 nanojunction material toward efficient CO2 photoreduction. Nanotechnology 25:165402

    Article  Google Scholar 

  20. Huang WC, Lyu LM, Yang YC et al (2012) Synthesis of Cu2O nanocrystals from cubic to rhombic dodecahedral structures and their comparative photocatalytic activity. J Am Chem Soc 134:1261–1267

    Article  Google Scholar 

  21. Chanda K, Rej S, Huang MH (2013) Facet-dependent catalytic activity of Cu2O nanocrystals in the one-pot synthesis of 1,2,3-triazoles by multicomponent click reactions. Chem Eur J 19:16036–16043

    Article  Google Scholar 

  22. Ho JY, Huang MH (2009) Synthesis of submicrometer-sized Cu2O crystals with morphological evolution from cubic to hexapod structures and their comparative photocatalytic activity. J Phys Chem C 113:14159–14164

    Article  Google Scholar 

  23. Kuo CH, Huang MH (2008) Facile synthesis of Cu2O nanocrystals with systematic shape evolution from cubic to octahedral structures. J Phys Chem C 112:18355–18360

    Article  Google Scholar 

  24. Xu L, Jiang LP, Zhu JJ (2009) Sonochemical synthesis and photocatalysis of porous Cu2O nanospheres with controllable structures. Nanotechnology 20:045605

    Article  Google Scholar 

  25. Zhang H, Di Z, Zhang L et al (2009) Cu2O hollow spheres: synthesis, characterization and magnetic property. J Nanosci Nanotechnol 9:1321–1325

    Article  Google Scholar 

  26. Hacialioglu S, Meng F, Jin S (2012) Facile and mild solution synthesis of Cu2O nanowires and nanotubes driven by screw dislocations. Chem Commun (Camb) 48:1174–1176

    Article  Google Scholar 

  27. Ding Y, Ge D, Yang L et al (2013) Controllable synthesis of Cu2O petalody octahedral microcrystals and multi-patterned evolution. J Colloid Interface Sci 392:151–157

    Article  Google Scholar 

  28. Kim J, Kim D, Veriansyah B et al (2009) Metal nanoparticle synthesis using supercritical alcohol. Mater Lett 63:1880–1882

    Article  Google Scholar 

  29. Choi H, Veriansyah B, Kim J et al (2010) Continuous synthesis of metal nanoparticles in supercritical methanol. J Supercrit Fluids 52:285–291

    Article  Google Scholar 

  30. Shin NC, Lee YH, Shin YH et al (2010) Synthesis of cobalt nanoparticles in supercritical methanol. Mater Chem Phys 124:140–144

    Article  Google Scholar 

  31. Pahari SK, Adschiri T, Panda AB (2011) Synthesis of monodispersed nanocrystalline materials in supercritical ethanol: a generalized approach. J Mater Chem 21:10377–10383

    Article  Google Scholar 

  32. Desmoulins-Krawiec S, Aymonier C, Loppinet-Serani A et al (2004) Synthesis of nanostructured materials in supercritical ammonia: nitrides, metals and oxides. J Mater Chem 14:228–232

    Article  Google Scholar 

  33. Gendrineau T, Marre S, Vaultier M et al (2012) Microfluidic synthesis of palladium nanocrystals assisted by supercritical CO2: tailored surface properties for applications in boron chemistry. Angew Chem Int Ed 51:8525–8528

    Article  Google Scholar 

  34. Yu S, Li S, Ge X et al (2014) Influence of reducing atmosphere of subcritical/supercritical mild alcohols on the synthesis of copper powder. Ind Eng Chem Res 53:2238–2243

    Article  Google Scholar 

  35. Veriansyah B, Park H, Kim JD et al (2009) Characterization of surface-modified ceria oxide nanoparticles synthesized continuously in supercritical methanol. J Supercrit Fluids 50:283–291

    Article  Google Scholar 

  36. Veriansyah B, Kim JD, Min BK et al (2010) Continuous synthesis of magnetite nanoparticles in supercritical methanol. Mater Lett 64:2197–2200

    Article  Google Scholar 

  37. Veriansyah B, Chun MS, Kim J (2011) Surface-modified cerium oxide nanoparticles synthesized continuously in supercritical methanol: study of dispersion stability in ethylene glycol medium. Chem Eng J 168:1346–1351

    Article  Google Scholar 

  38. Slostowski C, Marre S, Babot O et al (2012) Near- and supercritical alcohols as solvents and surface modifiers for the continuous synthesis of cerium oxide nanoparticles. Langmuir 28:16656–16663

    Article  Google Scholar 

  39. Pascu O, Marre S, Aymonier C et al (2013) Ultrafast and continuous synthesis of crystalline ferrite nanoparticles in supercritical ethanol. Nanoscale 5:2126–2132

    Article  Google Scholar 

  40. Li Z, Godsell JF, O’Byrne JP et al (2010) Supercritical fluid synthesis of magnetic hexagonal nanoplatelets of magnetite. J Am Chem Soc 132:12540–12541

    Article  Google Scholar 

  41. Sue K, Suzuki M, Arai K et al (2006) Size-controlled synthesis of metal oxide nanoparticles with a flow-through supercritical water method. Green Chem 8:634–638

    Article  Google Scholar 

  42. Rangappa D, Sone K, Ichihara M et al (2010) Rapid one-pot synthesis of LiMPO4 (M = Fe, Mn) colloidal nanocrystals by supercritical ethanol process. Chem Commun (Camb) 46:7548–7550

    Article  Google Scholar 

  43. Nugroho A, Kim SJ, Chang W et al (2013) Facile synthesis of hierarchical mesoporous Li4Ti5O12 microspheres in supercritical methanol. J Power Sources 244:164–169

    Article  Google Scholar 

  44. Nugroho A, Kim SJ, Chung KY et al (2011) Facile synthesis of nanosized Li4Ti5O12 in supercritical water. Electrochem Commun 13:650–653

    Article  Google Scholar 

  45. Hong SA, Kim SJ, Chung KY et al (2013) Continuous synthesis of lithium iron phosphate (LiFePO4) nanoparticles in supercritical water: effect of mixing tee. J Supercrit Fluids 73:70–79

    Article  Google Scholar 

  46. Hong SA, Kim SJ, Chung KY et al (2013) Continuous synthesis of lithium iron phosphate nanoparticles in supercritical water: effect of process parameters. Chem Eng J 229:313–323

    Article  Google Scholar 

  47. Moulder J, Sticke W, Sobol P et al (1992) Handbook of X-ray photoelectron spectroscopy. Perkin Elmer Coorporation, Physical Electronics Division, USA

    Google Scholar 

  48. Baltrusaitis J, Jayaweera PM, Grassian VH (2009) XPS study of nitrogen dioxide adsorption on metal oxide particle surfaces under different environmental conditions. Phys Chem Chem Phys 11:8295–8305

    Article  Google Scholar 

  49. Zarate RA, Hevia F, Fuentes S et al (2007) Novel route to synthesize CuO nanoplatelets. J Solid State Chem 180:1464–1469

    Article  Google Scholar 

  50. Zheng Z, Huang B, Wang Z et al (2009) Crystal faces of Cu2O and their stabilities in photocatalytic reactions. J Phys Chem C 113:14448–14453

    Article  Google Scholar 

  51. Shen JS, Chen YL, Wang QP et al (2013) In situ synthesis of red emissive copper nanoclusters in supramolecular hydrogels. J Mater Chem C 1:2092–2096

    Article  Google Scholar 

  52. Rawlings JB, Miller SM, Witkowski WR (1993) Model identification and control of solution crystallization processes: a review. Ind Eng Chem Res 32:1275–1296

    Article  Google Scholar 

  53. Wang ZL (2000) Transmission electron microscopy of shape-controlled nanocrystals and their assemblies. J Phys Chem B 104:1153–1175

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial supports by the Scientific Research Starting Foundation for Doctors of Science and Technology Agency of Liaoning Province, China (Grant No. 20111047) and (Grant No. 20121070), and Program for Liaoning Excellent Talents in University (Grant No. LR2012012) and (Grant No. LJQ2012034).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sansan Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Ge, X., Jiang, S. et al. Synthesis of octahedral and cubic Cu2O microcrystals in sub- and super-critical methanol and their photocatalytic performance. J Mater Sci 50, 4115–4121 (2015). https://doi.org/10.1007/s10853-015-8967-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-8967-3

Keywords

Navigation