Skip to main content
Log in

Effect of synthesis medium on aggregation tendencies of ZnO nanosheets and their superior photocatalytic performance

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A simple soft chemical method has been suggested for large-scale production of zinc oxide (ZnO) nanosheets at room temperature using two synthesis mediums: aqueous (H2O) and non-aqueous (C2H5OH). In H2O medium, nanosheets interwoven group wise in flower-like structures revealing the strong inter-hydrogen bonding among initially nucleated ZnO nanocrystals, whereas weak hydrogen bonding in C2H5OH medium leads to the formation of un-aggregated interwoven nanosheets. The growth of ZnO flower-like and interwoven nanosheets proceeded via anisotropic oriented attachment of ZnO nanocrystals. Obtained nanosheets were faceted, possessing large surface area, width hundreds of nanometers, and thickness in tens of nanometer, as characterized by scanning electron microscopy and transmission electron microscopy. These nanosheets show high sunlight photocatalytic activity toward the degradation of an organic pollutant ‘methylene blue dye.’ The enhancement in photodegradation efficiencies, interwoven sheets 99.94 %, and flower-like nanosheets 79.76 % for 120 min of irradiation is attributed to the surface oxygen vacancies narrowing the band gap as confirmed by photoluminescence spectra, faceted geometry, and large surface area of ZnO nanosheets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Gonzalez-Valls I, Lira-Cantu M (2009) Vertically-aligned nanostructures of ZnO for excitonic solar cells: a review. Energy Environ Sci 2:19–34

    Article  Google Scholar 

  2. Lai E, Kim W, Yang P (2008) Vertical nanowire array-based light emitting diode. Nano Res 1:123–128

    Article  Google Scholar 

  3. Jin Y, Wang J, Sun B, Blakesley JC, Greenham NC (2008) Solution-processed ultraviolet photodetectors based on colloidal ZnO nanoparticles. Nano Lett 8(6):1649–1653

    Article  Google Scholar 

  4. Zhang C, Zhang F, Xia T, Kumar N, Hahm JI, Liu J, Wang ZL, Xu J (2009) Low-threshold two-photon pumped ZnO nanowire lasers. Opt Express 17(10):7893–7900

    Article  Google Scholar 

  5. Wei A, Wang Z, Pan LH, Li WW, Xiong L, Dong XC, Huang W (2011) Room-temperature NH3 gas sensor based on hydrothermally grown ZnO nanorods. Chin Phys Lett 28:080702

    Article  Google Scholar 

  6. Frenzel H, Lajn A, Wenckstern H, Lorenz M, Schein F, Zhang Z, Grundmann M (2010) Recent progress on Zno-based metal-semiconductor field-effect transistors and their application in transparent integrated circuits. Adv Mater 22:5332–5349

    Article  Google Scholar 

  7. Hillman TR, Yamauchi T, Choi W, Dasari RR, Feld MS, Park Y, Yaqoob Z (2013) Digital optical phase conjugation for delivering two-dimensional images through turbid media. Sci Rep 3:1909

    Article  Google Scholar 

  8. Choi Y, Yang TD, Fang-Yen C, Kang P, Lee KJ, Dasari RR, Feld MS, Choi W (2011) Overcoming the diffraction limit using multiple light scattering in a highly disordered medium. Phys Rev Lett 104:023902

    Article  Google Scholar 

  9. Khokhra R, Kumar M, Rawat N, Barman PB, Jang H, Kumar R, Lee H (2013) Enhancing the numerical aperture of lenses using ZnO nanostructure-based turbid media. J Opt 15:125714

    Article  Google Scholar 

  10. Garcia MA, Merino JM, Fernandez EP, Quesada A, Venta J (2007) Magnetic properties of ZnO nanoparticles. Nano Lett 7(6):1489–1494

    Article  Google Scholar 

  11. Lim JH, Kang CK, Kim KK, Park IK, Hwang DK, Park SJ (2006) Electroluminescence emission from ZnO light-emitting diodes grown by high-temperature radiofrequency sputtering. Adv Mater 18:2720–2724

    Article  Google Scholar 

  12. Lansdown ABG, Taylor A (1997) Zinc and titanium oxides: promising UV-absorbers but what influence do they have on the intact skin? Int J Cosmet Sci 19:167–172

    Article  Google Scholar 

  13. Mohammad MT, Hashim AA, Al-Maamory MH (2006) Highly conductive and transparent ZnO thin films prepared by spray pyrolysis technique. Mater Chem Phys 99:382–387

    Article  Google Scholar 

  14. Vempati S, Mitra J, Dawson P (2012) One-step synthesis of ZnO nanosheets: a blue-white fluorophore. Nanoscale Res Lett 7:470

    Article  Google Scholar 

  15. Wang J, Liu P, Fu X, Li Z, Han W, Wang X (2009) Relationship between oxygen defects and the photocatalytic property of ZnO nanocrystals in Nafion membranes. Langmuir 25(2):1218–1223

    Article  Google Scholar 

  16. Guo MY, Ng AMC, Liu FZ, Djurisic AB, Chan WK, Su HM, Wong KS (2011) Effect of native defects on photocatalytic properties of ZnO. J Phys Chem C 115:11095–11101

    Article  Google Scholar 

  17. Li GR, Hu T, Pan GL, Yan TY, Gao XP, Zhu HY (2008) Morphology-function relationship of ZnO: polar planes, oxygen vacancies, and activity. J Phys Chem C 112:11859–11864

    Article  Google Scholar 

  18. Becker J, Raghupathi KR, St. Pierre J, Zhao D, Koodali RT (2011) Tuning of the crystallite and particle sizes of ZnO nanocrystalline materials in solvothermal synthesis and their photocatalytic activity for dye degradation. J Phys Chem C 115:13844–13850

    Article  Google Scholar 

  19. McLaren A, Valdes-Solis T, Li G, Tsang SC (2009) Shape and size effects of ZnO nanocrystals on photocatalytic activity. J Am Chem Soc 131(35):12540–12541

    Article  Google Scholar 

  20. Jang ES, Won JH, Hwang SJ, Choy JH (2006) Fine tuning of the face orientation of ZnO crystals to optimize their photocatalytic activity. Adv Mater 18:3309–3312

    Article  Google Scholar 

  21. Tian ZR, Voigt JA, Liu J, Mckenzie B, Mcdermott MJ, Rodriguez MA, Konishi H, Xu H (2003) Complex and oriented ZnO nanostructures. Nat Mater 2(12):821–826

    Article  Google Scholar 

  22. Wang L, Chang LX, Zhao B, Yuan ZY, Shao GS, Zheng WJ (2008) Systematic investigation on morphologies, forming mechanism, photocatalytic and photoluminescent properties of ZnO nanostructures constructed in ionic liquids. Inorg Chem 47:1443–1452

    Article  Google Scholar 

  23. Zhang L, Yang HQ, Ma JH, Li L, Wang XW, Zhang LH, Tian S, Wang XY (2010) Controllable synthesis and shape-dependent photocatalytic activity of ZnO nanorods with a cone and different aspect ratios and of short and fat ZnO microrods by varying the reaction temperature and time. Appl Phys A 100(4):1061–1067

    Article  Google Scholar 

  24. Kong M, Li Y, Chen X, Tian T, Fang P, Zheng F, Zhao X (2011) Tuning the relative concentration ratio of bulk defects to surface defects in TiO2 nanocrystals leads to high photocatalytic efficiency. J Am Chem Soc 133(41):16414–16417

    Article  Google Scholar 

  25. Justicia I, Ordejon P, Canto G, Mozos JL, Fraxedes J, Battiston GA, Gerbasi R, Figueras A (2002) Designed self-doped titanium oxide thin films for efficient visible-light photocatalysis. Adv Mater 14(19):1399–1402

    Article  Google Scholar 

  26. Zuo F, Wang L, Wu T, Zhang ZY, Borchardt D, Feng PY (2010) Self-doped Ti3+ enhanced photocatalyst for hydrogen production under visible light. J Am Chem Soc 132(34):11856–11857

    Article  Google Scholar 

  27. Wan Q, Wang TH, Zhao JC (2005) Enhanced photocatalytic activity of ZnO nanotetrapods. Appl Phys Lett 87(8):083105

    Article  Google Scholar 

  28. Koch U, Fojtik A, Weller H, Henglein A (1985) Photochemistry of semiconductor colloids. Preparation of extremely small ZnO particles, fluorescence phenomena and size quantization effects. Chem Phys Lett 122(5):507–510

    Article  Google Scholar 

  29. Hynek J, Kalousek V, Žouželka R, Bezdička P, Dzik P, Rathouský J, Demel J, Lang K (2014) High photocatalytic activity of transparent films composed of ZnO nanosheets. Langmuir 30(1):380–386

    Article  Google Scholar 

  30. Bang S, Lee S, Ko Y, Park J, Shin S, Seo H, Jeon H (2012) Photocurrent detection of chemically tuned hierarchical ZnO nanostructures grown on seed layers formed by atomic layer deposition. Nanoscale Res Lett 7(1):290

    Article  Google Scholar 

  31. Guo L, Ji YL, Xu H, Simon P, Wu Z (2002) Regularly shaped, single-crystalline ZnO nanorods with Wurtzite structure. J Am Chem Soc 124(50):14864–14865

    Article  Google Scholar 

  32. Munoz-Espi R, Jeschke G, Lieberwirth I, Gomez CM, Wegner G (2007) ZnO-latex hybrids obtained by polymer-controlled crystallization: a spectroscopic investigation. J Phys Chem B 111(4):697–707

    Article  Google Scholar 

  33. Pacholski C, Kornowski A, Weller H (2002) Self-assembly of ZnO: from nanodots to nanorods. Angew Chem Int Ed 41(7):1188–1191

    Article  Google Scholar 

  34. Taubert A, Glasser G, Palms D (2002) Kinetics and particle formation mechanism of zinc oxide particles in polymer-controlled precipitation from aqueous solution. Langmuir 18(11):4488–4494

    Article  Google Scholar 

  35. Tian ZR, Liu J, Voigt JA, Mckenzie B, Xu H (2003) Hierarchical and self-similar growth of self-assembled crystals. Angew Chem Int Ed 42(4):413–417

    Article  Google Scholar 

  36. Umetsu M, Mizuta M, Tsumoto K, Ohara S, Takami S, Watanabe H, Kumagai I, Adschiri T (2005) Bioassisted room-temperature immobilization and mineralization of zinc oxide-the structural ordering of ZnO nanoparticles into a flower-type morphology. Adv Mater 17(21):2571–2575

    Article  Google Scholar 

  37. Zhang T, Dong W, Keeter-Brewer M, Konar S, Njabon RN, Tian ZR (2006) Site-specific nucleation and growth kinetics in hierarchical nanosyntheses of branched ZnO crystallites. J Am Chem Soc 128(33):10960–10968

    Article  Google Scholar 

  38. Zhang Y, Mu J (2007) Controllable synthesis of flower- and rod-like ZnO nanostructures by simply tuning the ratio of sodium hydroxide to zinc acetate. Nanotechnology 18(7):075606

    Article  Google Scholar 

  39. Zou H, Luan Y, Ge J, Wang Y, Zhuang G, Li R, Li Z (2011) Synthesis of ZnO particles on zinc foil in ionic-liquid precursors. CrystEngComm 13(7):2656–2660

    Article  Google Scholar 

  40. Zhang J, Wang J, Zhou S, Duan K, Feng B, Weng J, Tang H, Wu P (2010) Ionic liquid-controlled synthesis of ZnO microspheres. J Mater Chem 20:9798–9804

    Article  Google Scholar 

  41. Kahn ML, Monge M, Colliere V, Senocq F, Maisonnat A, Chaudret B (2005) Size and shape control of crystalline zinc oxide nanoparticles: a new organometallic synthetic method. Adv Funct Mater 15(3):458–468

    Article  Google Scholar 

  42. Monge M, Kahn ML, Maisonnat A, Chaudret B (2003) Room-temperature organometallic synthesis of soluble and crystalline ZnO nanoparticles of controlled size and shape. Angew Chem Int Ed 42(43):5321–5324

    Article  Google Scholar 

  43. Antonietti M, Kuang D, Smarsly B, Zhou Y (2004) Ionic liquids for the convenient synthesis of functional nanoparticles and other inorganic nanostructures. Angew Chem Int Ed 43(38):4988–4992

    Article  Google Scholar 

  44. Zhang J, Sun L, Yin J, Su H, Liao C, Yan C (2002) Control of ZnO morphology via a simple solution route. Chem Mater 14(10):4172–4177

    Article  Google Scholar 

  45. Zhang X, Qin J, Xue Y, Yu P, Zhang B, Wang L, Liu R (2014) Effect of aspect ratio and surface defects on the photocatalytic activity of ZnO nanorods. Sci Rep 4:4596

    Google Scholar 

  46. Yang H, Cai W, Guo X (2014) Preparation and infrared emissivities of self-assembled ZnO spherical aggregates. Mater Sci Semicond Process 24:164–168

    Article  Google Scholar 

  47. Liu D, Lv Y, Zhang M, Liu Y, Zhu Y, Zong R, Zhu Y (2014) Defect-related photoluminescence and photocatalytic properties of porous ZnO nanosheets. J Mater Chem A 2:15377–15388

    Article  Google Scholar 

  48. Bai W, Zhu X, Zhu Z, Chu J (2008) Synthesis of zinc oxide nanosheet thin films and their improved field emission and photoluminescence properties by annealing processing. Appl Surf Sci 254(20):6483–6488

    Article  Google Scholar 

  49. Cao B, Cai W, Li Y, Sun F, Zhang L (2005) Ultraviolet-light-emitting ZnO nanosheets prepared by a chemical bath deposition method. Nanotechnology 16(9):1734

    Article  Google Scholar 

  50. Sun Y, Wang L, Yu X, Chen K (2012) Facile synthesis of flower-like 3D ZnO superstructures via solution route. CrystEngComm 14:3199–3204

    Article  Google Scholar 

  51. Wang J, Hou S, Zhang L, Chen J, Xiang L (2014) Ultra-rapid formation of ZnO hierarchical structures from dilution-induced supersaturated solutions. CrystEngComm 16:7115–7123

    Article  Google Scholar 

  52. Ma J, Su S, Fu W, Yang H, Zhou X, Huizhen Yao H, Chen Y, Yang L, Sun M, Mu Y, Lv P (2014) Synthesis of ZnO nanosheet array film with dominant 0001 facets and enhanced photoelectrochemical performance co-sensitized by CdS/CdSe. CrystEngComm 16:2910–2916

    Article  Google Scholar 

  53. Xingfu Z, Zhaolin H, Yiqun F, Su C, Weiping D, Nanping X (2008) Microspheric organization of multilayered ZnO nanosheets with hierarchically porous structures. J Phys Chem C 112(31):11722–11728

    Article  Google Scholar 

  54. Khoa NT, Kim SW, Thuan DV, Yoo DH, Kim EJ, Hahn SH (2014) Hydrothermally controlled ZnO nanosheet self-assembled hollow spheres/hierarchical aggregates and their photocatalytic activities. CrystEngComm 16:1344–1350

    Article  Google Scholar 

  55. Banfield JF, Welch SA, Zhang H, Ebert TT, Penn RL (2000) Aggregation-based crystal growth and microstructure development in natural iron oxyhydroxide biomineralization products. Science 289(5480):751–754

    Article  Google Scholar 

  56. Li P, Liu H, Zhang YF, Wei Y, Wang XK (2007) Synthesis of flower-like ZnO microstructures via a simple solution route. Mater Chem Phys 106(1):63–69

    Article  Google Scholar 

  57. Jia B, Gao L (2008) Growth of well-defined cubic hematite single crystals: oriented aggregation and ostwald ripening. Cryst Growth Des 8(4):1372–1376

    Article  Google Scholar 

  58. Vinogradov SN, Linnell RH (1971) Hydrogen bonding. Van Nostrand Reinhold Co, New York

    Google Scholar 

  59. Viswanatha R, Sarma DD (2007) Growth of nanocrystals in solution. In: Rao CNR, Müller A, Cheetham AK (eds) Nanomaterials chemistry: recent developments and new directions. Wiley-VCH Verlag GmbH & Co, KGaA, Weinheim, pp 140–157

    Google Scholar 

  60. Kawska A, Duchstein P, Hochrein O, Zahn D (2008) Atomistic mechanisms of ZnO aggregation from ethanolic solution: ion association, proton transfer, and self-organization. Nano Lett 8(8):2336–2340

    Article  Google Scholar 

  61. Mo M, Yu JC, Zhang LZ, Li SKA (2005) Self-assembly of ZnO nanorods and nanosheets into hollow microhemispheres and microspheres. Adv Mater 17(6):756–760

    Article  Google Scholar 

  62. Liu Y, Wang D, Peng Q, Chu D, Liu X, Li Y (2011) Directly assembling ligand-free ZnO nanocrystals into three-dimensional mesoporous structures by oriented attachment. Inorg Chem 50(12):5841–5847

    Article  Google Scholar 

  63. Layek A, Mishra G, Sharma A, Spasova M, Dhar S, Chowdhury A, Bandyopadhyaya R (2012) A Generalized three-stage mechanism of ZnO nanoparticle formation in homogeneous liquid medium. J Phys Chem C 116(46):24757–24769

    Article  Google Scholar 

  64. Li WJ, Shi EW, Zhong WZ, Yin ZW (1999) Growth mechanism and growth habit of oxide crystals. J Cryst Growth 203(1–2):186–196

    Article  Google Scholar 

  65. Zhang DF, Sun LD, Yin JL, Yan CH, Wang RM (2005) Attachment-driven morphology evolvement of rectangular ZnO nanowires. J Phys Chem B 109(18):8786–8790

    Article  Google Scholar 

  66. Xu S, Wang ZL (2011) One-dimensional ZnO nanostructures: solution growth and functional properties. Nano Res 4(11):1013–1098

    Article  Google Scholar 

  67. Cheng B, Shi W, Russell-Tanner JM, Zhang L, Samulski ET (2006) Synthesis of variable aspect-ratio, single-crystalline ZnO nanostructures. Inorg Chem 45(3):1208–1214

    Article  Google Scholar 

  68. Xu F, Shen Y, Sun L, Zeng H, Lu Y (2011) Enhanced photocatalytic activity of hierarchical ZnO nanoplate-nanowire architecture as environmentally safe and facilely recyclable photocatalyst. Nanoscale 3:5020–5025

    Article  Google Scholar 

  69. Liao ZM, Lu Y, Wu HC, Bie YQ, Zhou YB, Yu DP (2011) Improved performance of ZnO nanowire field-effect transistors via focused ion beam treatment. Nanotechnology 22(37):375201

    Article  Google Scholar 

  70. Zhang AQ, Zhang L, Sui L, Qian DJ, Chen M (2013) Morphology-controllable synthesis of ZnO nano/micro structures by a solvothermal process in ethanol solution. Cryst Res Technol 48(11):947–955

    Article  Google Scholar 

  71. García-Rodríguez S (2013) Alternative metal oxide photocatalysts. In: Coronado JM, Fresno F, Hernández-Alonso MD, Portela R (eds) Design of advanced photocatalytic materials for energy and environmental applications. Springer, London, p 106

    Google Scholar 

  72. Miao TT, Guo YR, Pan QJ (2013) The SL-assisted synthesis of hierarchical ZnO nanostructures and their enhanced photocatalytic activity. J Nanopart Res 15(6):1725

    Article  Google Scholar 

  73. Eskizeybek V, Sarı F, Gulce H, Gulce A, Avc A (2012) Preparation of the new polyaniline/ZnO nanocomposite and its photocatalytic activity for degradation of methylene blue and malachite green dyes under UV and natural sun lights irradiations. Appl Catal B 119–120:197–206

    Article  Google Scholar 

  74. Seema H, Kemp KC, Chandra V, Kim KS (2012) Graphene–SnO2 composites for highly efficient photocatalytic degradation of methylene blue under sunlight. Nanotechnology 23(35):355705

    Article  Google Scholar 

  75. Pons AJ, Sagués F, Bees MA, Sørensen PG (2000) Pattern formation in the methylene-blue–glucose system. J Phys Chem B 104(10):2251–2259

    Article  Google Scholar 

  76. Dave MD, Pande UC (2013) Photoinduced electron transfer reaction of 2-thiobarbituric acid and methylene blue: mechanism and kinetics. Chem Sci Trans 2(3):749–760

    Google Scholar 

  77. Matsuoka M (1990) Other chromophores. In: Matsuoka M (ed) Infrared absorbing dyes. Plenum Press, New York, p 89

    Chapter  Google Scholar 

  78. Salvador P, Garcia Gonzalez ML, Munoz F (1992) Catalytic role of lattice defects in the photoassisted oxidation of water at (001) n-titanium(IV) oxide rutile. J Phys Chem 96(25):10349–10353

    Article  Google Scholar 

  79. Liu Y, Son WJ, Lu J, Huang B, Dai Y, Whangbo MH (2011) Composition dependence of the photocatalytic activities of BiOCl1−x Br x solid solutions under visible light. Chem Eur J 17(34):9342–9349

    Article  Google Scholar 

  80. Warule SS, Chaudhari NS, Kale BB, More MA (2009) Novel sonochemical assisted hydrothermal approach towards the controllable synthesis of ZnO nanorods, nanocups and nanoneedles and their photocatalytic study. CrystEngComm 11:2776–2783

    Article  Google Scholar 

  81. Yu W, Li X, Gao X (2005) Catalytic synthesis and structural characteristics of high-quality tetrapod-like ZnO nanocrystals by a modified vapor transport process. Cryst Growth Des 5(1):151–155

    Article  Google Scholar 

  82. Liu B, Fu Z, Jia Y (2001) Green luminescent center in undoped zinc oxide films deposited on silicon substrates. Appl Phys Lett 79(7):943

    Article  Google Scholar 

  83. Mahamuni S, Borgohain K, Bendre BS, Leppert VJ, Risbud SH (1999) Spectroscopic and structural characterization of electrochemically grown ZnO quantum dots. J Appl Phys 85(5):2861

    Article  Google Scholar 

  84. Hu JQ, Ma XL, Xie ZY, Wong NB, Lee CS, Lee ST (2001) Characterization of zinc oxide crystal whiskers grown by thermal evaporation. Chem Phys Lett 344(1–2):97–100

    Article  Google Scholar 

  85. Williams G, Kamat PV (2009) Graphene semiconductor nanocomposites: excited-state interactions between ZnO nanoparticles and graphene oxide. Langmuir 25(24):13869–13873

    Article  Google Scholar 

  86. Lu Y, Wang L, Wang D, Xie T, Chen L, Lin Y (2011) A comparative study on plate-like and flower-like ZnO nanocrystals surface photovoltage property and photocatalytic activity. Mater Chem Phys 129(1–2):281–287

    Article  Google Scholar 

  87. Umar A, Chauhan MS, Chauhan S, Kumar R, Kumar G, Al-Sayari SA, Hwang SW, Al-Hajry A (2011) Large-scale synthesis of ZnO balls made of fluffy thin nanosheets by simple solution process: structural, optical and photocatalytic properties. J Colloid Interface Sci 363(2):521–528

    Article  Google Scholar 

  88. Tong Y, Cheng J, Liu Y, Siu GG (2009) Enhanced photocatalytic performance of ZnO hierarchical nanostructures synthesized via a two-temperature aqueous solution route. Scr Mater 60(12):1093–1096

    Article  Google Scholar 

  89. Sun L, Shao R, Chen Z, Tang L, Dai Y, Ding J (2012) Alkali-dependent synthesis of flower-like ZnO structures with enhanced photocatalytic activity via a facile hydrothermal method. Appl Surf Sci 258(14):5455–5461

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the research fund of Nanotechnology Lab, Jaypee University of Information Technology, Waknaghat, Solan (H.P.), India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajesh Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khokhra, R., Singh, R.K. & Kumar, R. Effect of synthesis medium on aggregation tendencies of ZnO nanosheets and their superior photocatalytic performance. J Mater Sci 50, 819–832 (2015). https://doi.org/10.1007/s10853-014-8642-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8642-0

Keywords

Navigation