Skip to main content
Log in

Effects of the counter-cation nature and preparation method on the structure of La2Zr2O7

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Lanthanum zirconate with a pyrochlore structure exhibits interesting thermal and structural properties for thermal barrier coating applications operating at high temperature. This study focused on the synthesis of La2Zr2O7 powders by soft chemistry (citrate, coprecipitation, and sol–gel methods), and the effects of the solvent and the nature of the precursors used on the powder properties were investigated. The nature of the counter-cation influenced the structural phase of the compound. A low polarizable counter-cation (chloride) permitted the elaboration of a pyrochlore structure within a larger range of parameters compared with highly polarizable counter-cations (nitrate and acetate). Moreover, the nature of the solvent, and specifically the strength of the interactions within it, had an impact on the particle size. Specifically, the use of water, which is a solvent with strong interactions, led to a smaller particle size than the use of ethanol, which has weaker interactions. Based on these results, the crystalline phase of the powders can be predicted as a function of the precursor and the solvent used for the different synthesis routes, and the particle size can be used to evaluate the reactivity of the powders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bratton RJ, Lau SK (1981) Zirconia thermal barrier coatings. In: Heuer AH, Hobbs LW (eds) Science and Technology of Zirconia II. American Ceramic Society, Colombus, pp 226–253

    Google Scholar 

  2. Zhu D, Miller RA (1998) Sintering and creep behavior of plasma-sprayed zirconia- and hafnia-based thermal barrier coating. Surf Coat Technol 108–109:114–120

    Article  Google Scholar 

  3. Vassen R, Cao X, Tietz F, Basu D, Stöver D (1999) Zirconates as new materials for thermal barrier coatings. J Am Ceram Soc 83:2023–2028

    Article  Google Scholar 

  4. Andriamasinoro D, Kieffer R, Kiennemann A (1993) Preparation of stabilized copper rare earth oxide catalysts for the synthesis of methanol from syngas. Appl Catal A 106:201–212

    Article  Google Scholar 

  5. Kido H, Komarneni S, Roy R (1991) Preparation of La2Zr2O7 by sol–gel route. J Am Ceram Soc 74:422–424

    Article  Google Scholar 

  6. Yamamura H, Nishino H, Kakinuma K (2008) Relationship between oxide-ion conductivity and dielectric relaxation in the Ln2Zr2O7 system having pyrochlore-type compositions (Ln = Yb, Y, Gd, Eu, Sm, Nd, La. J Phys Chem Solids 69:1711–1717

    Article  Google Scholar 

  7. Tong Y, Zhu J, Lu L, Wang X, Yang X (2008) Preparation and characterization of Ln2Zr2O7 (Ln = La and Nd) nanocrystals and their photocatalytic properties. J Alloys Compd 465:280–284

    Article  Google Scholar 

  8. Lehmann H, Pitzer D, Pracht G, Vassen R, Stöver D (2003) Thermal conductivity and thermal expansion of the lanthanum rare-earth element zirconate system. J Am Ceram Soc 86:1338–1344

    Article  Google Scholar 

  9. Chen D, Xu R (1998) Hydrothermal synthesis and characterization of La2M2O7 (M = Ti, Zr) powders. Mater Res Bull 33:409–417

    Article  Google Scholar 

  10. Wang C, Wang Y, Wang L, Sun X, Yang C, Zou Z, Li X (2014) Hydrothermal assisted synthesis and hot-corrosion resistance of nano lanthanum zirconate particles. Ceram Int 40:3981–3988

    Article  Google Scholar 

  11. Matsumura Y, Yoshinaka M, Hirota K, Yamaguchi O (1997) Formation and sintering of La2Zr2O7 by the hydrazine method. Solid State Commun 104:341–345

    Article  Google Scholar 

  12. Dhas NA, Patil KC (1993) Combustion synthesis and properties of fine particle rare-earth metal zirconates Ln2Zr2O7. J Mater Chem 3:1289–1294

    Article  Google Scholar 

  13. Zhang A, Lu M, Zhou G, Wang S, Zhou Y (2006) Combustion synthesis and photoluminescence of Eu3+, Dy3+ doped La2Zr2O7 nanocrystals. J Phys Chem Solids 67:2430–2434

    Article  Google Scholar 

  14. Zhang A, Lu M, Yang Z, Zhou G, Zhou Y (2008) Systematic research on Re2Zr2O7 (Re = La, Nd, Eu and Y) nanocrystals: preparation, structure and photoluminescence characterization. Solid State Sci 10:74–81

    Article  Google Scholar 

  15. Nair J, Nair P, Doesburg EBM, Van Ommen JG, Ross JRH, Burggraff AJ, Mizukami F (1998) Preparation and characterization of lanthanum zirconate. J Mater Sci 33:4517–4523. doi:10.1023/A:1004496100596

    Article  Google Scholar 

  16. Joulia A, Vardelle M, Rossignol S (2013) Synthesis and thermal stability of Re2Zr2O7 (Re = La, Gd) and La2(Zr1-xCex)2O7-δ compounds under reducing and oxidant atmospheres for thermal barrier coatings. J Eur Ceram Soc 33:2633–2644

    Article  Google Scholar 

  17. Zhou H, Yi D, Yu Z, Xiao L (2007) Preparation and thermophysical properties of CeO2 doped La2Zr2O7 ceramic for thermal barrier coatings. J Alloys Compd 438:217–221

    Article  Google Scholar 

  18. Ion ED, Malic B, Kosec M (2007) Lanthanum zirconate nanoparticles and ceramics produced a nitrate modified alkoxide synthesis route. J Sol–Gel Sci Technol 44:203–209

    Article  Google Scholar 

  19. Koteswara Rao K, Banu T, Vithal M, Swamy GYSK, Ravi Kumar K (2002) Preparation and characterization of bulk and nano particles of La2Zr2O7 and Nd2Zr2O7 by sol–gel method. Mater Lett 54:205–210

    Article  Google Scholar 

  20. Abdelsayed V, Shekhawat D, Postron JA Jr, Spivey JJ (2013) Synthesis, characterization, and catalytic activity of Rh-based lanthanum zirconate pyrochlores for higher alcohol synthesis. Catal Today 207:65–73

    Article  Google Scholar 

  21. Bansal NP, Zhu D (2007) Effects of doping on thermal conductivity of pyrochlore oxides for advanced thermal barrier coatings. Mater Sci Eng, A 459:192–195

    Article  Google Scholar 

  22. Poulsen FW, van der Puil N (1992) Phase relations and conductivity of Sr- and La-zirconates. Solid State Ion 53–56:777–783

    Article  Google Scholar 

  23. Hu KJ, Liu ZG, Wang JY, Zhu C, Ouyang JH (2013) Influence of calcinations temperature on synthesis and photoluminescence properties of Eu3+ doped La2Zr2O7 particles. J Alloys Compd 576:177–180

    Article  Google Scholar 

  24. Chen H, Gao Y, Liu Y, Luo H (2009) Coprecipitation synthesis and thermal conductivity of La2Zr2O7. J Alloys Compd 480:843–848

    Article  Google Scholar 

  25. Wang J, Bai S, Zhang H, Zhang C (2009) The structure, thermal expansion coefficient and sintering behavior of Nd3+ doped La2Zr2O7 for thermal barrier coatings. J Alloys Compd 476:89–91

    Article  Google Scholar 

  26. Wang Y, Li C, Wang C, Zhang A, Chen Y (2014) Synthesis of La2O3-ZrO2-Y2O3 with various Y2O3 contents via hydrothermal method : A phase evolution and sintering-resistance properties study. Int J Appl Ceram Technol (article in press):1–6.

  27. Wang C, Wang Y, Cheng Y, Huang W, Khan ZS, Fan X, Wang Y, Zou B, Cao X (2012) Preparation and thermophysical properties of nano-sized Ln2Zr2O7 (Ln = La, Nd, Sm and Gd) ceramics with pyrochlore structure. J Mater Sci 47:4392–4399. doi:10.1007/s10853-012-6293-6

    Article  Google Scholar 

  28. Prusty D, Pathak A, Chintha A, Mukherjee B, Chowdhury A (2014) Structural investigations on the compositional anomalies in lanthanum zirconate system synthesized by coprecipitation method. J Am Ceram Soc 97:718–724

    Article  Google Scholar 

  29. Cadle RD (1965) Particle size theory and industrial applications. Reinhold Publishing Corp, New York

    Google Scholar 

  30. Allen T (1981) Particle size measurement, 3rd edn. Chapman and Hall, London

    Book  Google Scholar 

  31. Duarte W, Rossignol S, Vardelle M (2014) La2Zr2O7 (LZ) coatings by liquid feedstock plasma spraying: The role of precursors. ICACC 2014 conference proceeding, Daytona Beach, FL, USA (Submitted)

  32. Fileti EE, chaudhuri P, Canuto S (2004) Relative strength of hydrogen bond interaction in alcohol-water complexes. Chem Phys Lett 400:494–499

    Article  Google Scholar 

  33. Radha AV, Ushakov SV, Navrotsky A (2009) Thermochemistry of lanthanum zirconate pyrochlore. J Mater Res 24:3350–3357

    Article  Google Scholar 

  34. Wang C, Fabrichnaya O, Zinkevich M, Du Y, Aldinger F (2008) Experimental study and thermodynamic modeling of the ZrO2-LaO1.5 system. CALPHAD 32:111–120

    Article  Google Scholar 

  35. Mikami M, Nakamura S (2006) Electronic structure of rare-earth sesquioxides and oxysulfides. J Alloys Compd 408–412:687–692

  36. Barberis P, Merle-Méjean T, Quintard P (1999) On Raman spectroscopy of zirconium oxide films. J Mater Sci 246:232–243. doi:10.1016/S0022-3115(97)00038-X

    Google Scholar 

  37. Corobea C, Donescu D, Raditoiu V, Voicu SI, Nechifor G (2006) Membrane materials IV. Functionalised hybrid plymer nanoparticles for copper ions separation on colloidal ultrafiltration. Rev Chim Bucharest 57:981–987

    Google Scholar 

  38. Cavalcante ADO, Ribeiro MCC, Skaf MS (2014) Polarizability effects on the structure and dynamics of ionic liquids. J Chem Phys. doi:10.1063/1.4869143

  39. Li YF, Huang JF, Cao LY, Wu JP, Fei J (2012) Effects of different solvents on preparation of La3Cu2O4 crystallites synthesized by sol-gel process. Gong Cai/J Funct Mater 43:2049–2051

    Google Scholar 

  40. Biswal RC, Biswas K (2013) Synthesis and characterization of Sr2+ and Mg2+ doped LaGaO3 by coprécipitation method foolwed by hydrothermal treatment for solid oxide fuel cell applications. J Eur Ceram Soc 33:3053–3058

    Article  Google Scholar 

  41. Peiteado M, Iglesias Y, De Frutos J, Fernandez JF, Caballero AC (2006) Preparation of ZnO-SnO2 ceramic materials by a coprécipitation method. Bol Soc Esp Ceram 45:158–162

    Article  Google Scholar 

  42. Kaliszewski MS, Heuer AH (1990) Alcohol interaction with zirconia powders. J Am Ceram Soc 73:1504–1509

    Article  Google Scholar 

  43. Isobe T, Nagakawa Y, Hayashi M, Matsushita S, Nakajima A (2012) Anion-specific effects on the interaction forces between Al2O3 surfaces and dispersibility of Al2O3 colloids in electrolyte solutions. Colloids Surf A 396:233–237

    Article  Google Scholar 

  44. Duan L, Jia S, Zhao L (2010) Study on morphologies of Co microcrystals produced by solvothermal method with different solvents. Mater Res Bull 45:373–376

    Article  Google Scholar 

  45. Lallemant L, Roussel N, Fantozzi G, Garnier V, Bonnefont G, Douillard T, Durand B, Guillemet-Fristsch S, Cahne-ching JY, Garcia-Gutierez D, Aguilar-Garib J (2014) Effect of amount of doping agent on sintering, microstructure and optical properties of Zr anf La-doped alumina sintered by SPS. J Eur Ceram Soc 34:1279–1288

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the DGA (French Ministry of Defense) and CNES National R&T program for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvie Rossignol.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duarte, W., Meguekam, A., Colas, M. et al. Effects of the counter-cation nature and preparation method on the structure of La2Zr2O7 . J Mater Sci 50, 463–475 (2015). https://doi.org/10.1007/s10853-014-8606-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8606-4

Keywords

Navigation