Skip to main content
Log in

Effects of SEBS-g-MA copolymer on non-isothermal crystallization kinetics of polypropylene

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The non-isothermal crystallization kinetics of pure PP and PP/SEBS-g-MA blends up to volume fraction, Φ d (0–0.50) was studied by differential scanning calorimetry at four different cooling rates. Crystallization parameters were analyzed by Ozawa and Liu models. The Ozawa model fits in the PP/SEBS-g-MA blends and indicates the effect of SEBS-g-MA copolymer on the crystallization process of polypropylene. Augis–Bennet model has been used to calculate activation energy, ∆E, during non-isothermal crystallization process. The value of ∆E decreased with SEBS-g-MA due to flexibility of SEBS-g-MA by which movements of chains of PP become easier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zhanhai Y, Jinghui Y, Jinghua Y (2001) Isothermal crystallization and crystallization morphology of non-cross-linking linear low-density polyethylene-grafted-acrylic acid. Int J Polym Mater 50:175–184. doi:10.1080/00914030108035099

    Article  Google Scholar 

  2. Wang B, Hu G, Wei L (2008) Melting behavior, nonisothermal crystallization kinetics, and morphology of PP/nylon 11/EPDM-g-MAH blends. J Appl Polym Sci 107:3013–3022. doi:10.1002/app.27485

    Article  Google Scholar 

  3. Jiasheng Q, Pingsheng H (2003) Non-isothermal crystallization of HDPE/nano-SiO2 composite. J Mater Sci 38:2299–2304. doi:10.1023/A:1023968026684

    Article  Google Scholar 

  4. Buzarovska A, Bogoeva-Gaceva G, Grozdanov A et al (2007) Crystallization behavior of poly(hydroxybytyrate-co-valerate) in model and bulk PHBV/kenaf fiber composites. J Mater Sci 42:6501–6509. doi:10.1007/s10853-007-1527-8

    Article  Google Scholar 

  5. Cruz-Silva R, Romero-García J, Angulo-Sánchez JL (2005) Nucleation activity of polyaniline coated short glass fiber towards isotactic polypropylene. J Mater Sci 40:5107–5109. doi:10.1007/s10853-005-1687-3

    Article  Google Scholar 

  6. Păcurariu C, Lazău RI, Lazău I, Tiţa D (2007) Kinetics of non-isothermal crystallization of some glass-ceramics based on basalt. J Therm Anal Calorim 88:647–652. doi:10.1007/s10973-006-8024-1

    Article  Google Scholar 

  7. Mileva D, Radusch H-J, Betchev C (2007) Study on the phase behavior of high density polyethylene–ethylene octene copolymer blends. Macromol Mater Eng 292:319–328. doi:10.1002/mame.200600331

    Article  Google Scholar 

  8. Li G, Mu X, Fan S, Ren X (2009) Study on the non-isothermal melt crystallization kinetics of PTT/PBT blends. J Macromol Sci B 48:684–695. doi:10.1080/00222340902841271

    Article  Google Scholar 

  9. Wellen RMR, Rabello MS (2005) The kinetics of isothermal cold crystallization and tensile properties of poly(ethylene terephthalate). J Mater Sci 40:6099–6104. doi:10.1007/s10853-005-3173-3

    Article  Google Scholar 

  10. Şanlı S, Durmus A, Ercan N (2012) Isothermal crystallization kinetics of glass fiber and mineral-filled polyamide 6 composites. J Mater Sci 47:3052–3063. doi:10.1007/s10853-011-6137-9

    Article  Google Scholar 

  11. Lu X, Wen X, Yang D (2011) Isothermal crystallization kinetics and morphology of biodegradable poly(3-hydroxybutyrate-co-4-hydroxybutyrate). J Mater Sci 46:1281–1288. doi:10.1007/s10853-010-4912-7

    Article  Google Scholar 

  12. Chiu F-C, Lai S-M, Li H-C, Chen C-C (2011) Characterization of nylon 6/ABS blends with and without a maleated polybutadiene as compatibilizer. J Polym Res 18:627–635. doi:10.1007/s10965-010-9457-6

    Article  Google Scholar 

  13. Martuscelli E, Riva F, Sellitti C, Silvestre C (1985) Crystallization, morphology, structure and thermal behaviour of nylon-6/rubber blends. Polymer 26:270–282. doi:10.1016/0032-3861(85)90040-0

    Article  Google Scholar 

  14. Balamurugan GP, Maiti SN (2008) Nonisothermal crystallization kinetics of polyamide 6 and ethylene-co-butyl acrylate blends. J Appl Polym Sci 107:2414–2435. doi:10.1002/app.27377

    Article  Google Scholar 

  15. Mingliang G, Demin J, Weibing X (2007) Study on the crystallization properties of polypropylene/montmorillonite composites. Polym-Plast Technol Eng 46:985–990. doi:10.1080/03602550701519449

    Article  Google Scholar 

  16. Peng H, Luo Y, Hong H et al (2008) Study on crystallization behavior of solid-phase graft copolymers of polypropylene with maleic anhydride and methyl methacrylate. Polym-Plast Technol Eng 47:996–1001. doi:10.1080/03602550802353128

    Article  Google Scholar 

  17. Ding J, Ma W, Song F, Zhong Q (2013) Effect of nano-calcium carbonate on microcellular foaming of polypropylene. J Mater Sci 48:2504–2511. doi:10.1007/s10853-012-7039-1

    Article  Google Scholar 

  18. Nitta K, Kawada T, Yamahiro M et al (2000) Polypropylene-block-poly(ethylene-co-propylene) addition to polypropylene/poly(ethylene-co-propylene) blends: morphology and mechanical properties. Polymer 41:6765–6771. doi:10.1016/S0032-3861(99)00895-2

    Article  Google Scholar 

  19. Wenig W (1994) Ageing effects during isothermal crystallization of polypropylene blended with elastomers. J Mater Sci 29:4708–4712. doi:10.1007/BF00356513

    Article  Google Scholar 

  20. Budrugeac P (2001) The effect of oxygen pressure on the rate of non-isothermal thermo-oxidation of low density polyethylene. J Mater Sci 36:2999–3001. doi:10.1023/A:1017918907474

    Article  Google Scholar 

  21. Van der Wal A, Mulder J, Oderkerk J, Gaymans R (1998) Polypropylene–rubber blends: 1. The effect of the matrix properties on the impact behaviour. Polymer 39:6781–6787. doi:10.1016/S0032-3861(98)00170-0

    Article  Google Scholar 

  22. Thanyaprueksanon S, Thongyai S, Praserthdam P (2007) New synthesis methods for polypropylene-co-ethylene-propylene rubber. J Appl Polym Sci 103:3609–3616. doi:10.1002/app.25392

    Article  Google Scholar 

  23. Gupta AK, Purwar SN (1984) Melt rheological properties of polypropylene/SEBS (styrene–ethylene butylene–styrene block copolymer) blends. J Appl Polym Sci 29:1079–1093. doi:10.1002/app.1984.070290406

    Article  Google Scholar 

  24. Gupta AK, Purwar SN (1984) Crystallization of PP in PP/SEBS blends and its correlation with tensile properties. J Appl Polym Sci 29:1595–1609. doi:10.1002/app.1984.070290514

    Article  Google Scholar 

  25. Gupta AK, Purwar SN (1984) Tensile yield behavior of PP/SEBS blends. J Appl Polym Sci 29:3513–3531. doi:10.1002/app.1984.070291126

    Article  Google Scholar 

  26. Gupta AK, Purwar SN (1985) Studies on binary and ternary blends of polypropylene with SEBS, PS, and HDPE. I. Melt rheological behavior. J Appl Polym Sci 30:1777–1798. doi:10.1002/app.1985.070300501

    Article  Google Scholar 

  27. Liang JZ, Li RKY (2000) Rubber toughening in polypropylene: a review. J Appl Polym Sci 77:409–417. doi:10.1002/(SICI)1097-4628(20000711)77:2<409:AID-APP18>3.0.CO;2-N

    Article  Google Scholar 

  28. Martuscelli E, Silvestre C, Bianchi L (1983) Properties of thin films of isotactic polypropylene blended with polyisobutylene and ethylene-propylene-diene terpolymer rubbers. Polymer 24:1458–1468. doi:10.1016/0032-3861(83)90231-8

    Article  Google Scholar 

  29. Bartczak Z, Galeski A, Krasnikova NP (1987) Primary nucleation and spherulite growth rate in isotactic polypropylene-polystyrene blends. Polymer 28:1627–1634. doi:10.1016/0032-3861(87)90002-4

    Article  Google Scholar 

  30. Zhang M, Liu Y, Zhang X et al (2002) The effect of elastomeric nano-particles on the mechanical properties and crystallization behavior of polypropylene. Polymer 43:5133–5138. doi:10.1016/S0032-3861(02)00393-2

    Article  Google Scholar 

  31. Li C, Tian G, Zhang Y, Zhang Y (2002) Crystallization behavior of polypropylene/polycarbonate blends. Polym Test 21:919–926. doi:10.1016/S0142-9418(02)00034-X

    Article  Google Scholar 

  32. Mosavian MTH, Sahebian S, Bakhtiari A (2011) Non-isothermal crystallization of Al 2 O 3/HDPE composite. Polym-Plast Technol Eng 50:225–231. doi:10.1080/03602559.2010.531432

    Article  Google Scholar 

  33. Quan H, Li Z, Yang M, Lu Z (2005) Nonisothermal crystallization nucleation of in-situ fibrillar and spherical inclusions in poly (phenylene sulfide)/isotactic polypropylene blends. J Macromol Sci Part B 44:761–778. doi:10.1080/00222340500251402

    Article  Google Scholar 

  34. Xu G, Shi W, Hu P, Mo S (2005) Crystallization kinetics of polypropylene with hyperbranched polyurethane acrylate being used as a toughening agent. Eur Polym J 41:1828–1837. doi:10.1016/j.eurpolymj.2005.02.037

    Article  Google Scholar 

  35. Li Y, Chen L, Zhou X (2008) Interfacial crystalline behavior in glass-fiber/polypropylene composites modified by block copolymer coupling agents. J Mater Sci 43:5083–5091. doi:10.1007/s10853-008-2588-z

    Article  Google Scholar 

  36. Sharma R, Maiti SN (2014) Effects of crystallinity of PP and flexibility of SEBS-g-MA copolymer on the mechanical properties of PP/SEBS-g-MA blends. Polym-Plast Technol Eng 53:229–238. doi:10.1080/03602559.2013.843706

    Article  Google Scholar 

  37. Denac M, Musil V, Šmit I (2005) Polypropylene/talc/SEBS (SEBS-g-MA) composites. Part 2. Mechanical properties. Compos Part Appl Sci Manuf 36:1282–1290. doi:10.1016/j.compositesa.2005.01.011

    Article  Google Scholar 

  38. Reliance Polymers Reliance Polymers polypropylene C120MN.

  39. kraton polymers Kraton polymer SEBS-g-MA FG1901.

  40. Lamberti G (2004) Importance of heat transfer phenomena during DSC polymer solidification. Heat Mass Transf 41:23–31. doi:10.1007/s00231-004-0509-5

    Article  Google Scholar 

  41. Hay J, Sabir M (1969) Crystallization kinetics of high polymers. Polyethylene oxide—Part II. Polymer 10:203–211. doi:10.1016/0032-3861(69)90031-7

    Article  Google Scholar 

  42. Hay JN (1979) Crystallisation kinetics and melting studies. Br Polym J 11:137–145. doi:10.1002/pi.4980110307

    Article  Google Scholar 

  43. Hay JN, Fitzgerald PA, Wiles M (1976) Use of differential scanning calorimetry to study polymer crystallization kinetics. Polymer 17:1015–1018. doi:10.1016/0032-3861(76)90177-4

    Article  Google Scholar 

  44. Zhou H, Ying J, Xie X et al (2010) Nonisothermal crystallization behavior and kinetics of isotactic polypropylene/ethylene–octene blends. Part II: modeling of crystallization kinetics. Polym Test 29:915–923. doi:10.1016/j.polymertesting.2010.06.004

    Article  Google Scholar 

  45. Durmus A, Yalçınyuva T (2009) Effects of additives on non-isothermal crystallization kinetics and morphology of isotactic polypropylene. J Polym Res 16:489–498. doi:10.1007/s10965-008-9252-9

    Article  Google Scholar 

  46. Wang J, Dou Q (2007) Non-isothermal crystallization kinetics and morphology of isotactic polypropylene (iPP) nucleated with rosin-based nucleating agents. J Macromol Sci Part B 46:987–1001. doi:10.1080/00222340701457311

    Article  Google Scholar 

  47. Kim SH, Ahn SH, Hirai T (2003) Crystallization kinetics and nucleation activity of silica nanoparticle-filled poly(ethylene 2,6-naphthalate). Polymer 44:5625–5634. doi:10.1016/S0032-3861(03)00623-2

    Article  Google Scholar 

  48. Liu M, Zhao Q, Wang Y et al (2003) Melting behaviors, isothermal and non-isothermal crystallization kinetics of nylon 1212. Polymer 44:2537–2545. doi:10.1016/S0032-3861(03)00101-0

    Article  Google Scholar 

  49. Bishara A, Shaban HI (2006) Nonisothermal crystallization kinetics of poly(ethylene terephthalate) and poly(methyl methacrylate) blends. J Appl Polym Sci 101:3565–3571. doi:10.1002/app.22440

    Article  Google Scholar 

  50. Purnima D, Maiti SN, Gupta AK (2006) Interfacial adhesion through maleic anhydride grafting of EPDM in PP/EPDM blend. J Appl Polym Sci 102:5528–5532. doi:10.1002/app.24597

    Article  Google Scholar 

  51. Monasse B, Haudin JM (1986) Thermal dependence of nucleation and growth rate in polypropylene by non isothermal calorimetry. Colloid Polym Sci 264:117–122. doi:10.1007/BF01414836

    Article  Google Scholar 

  52. Xu J, Feng L, Liu Z et al (1999) Nonisothermal crystallization of s-PP fractions. J Appl Polym Sci 71:897–901. doi:10.1002/(SICI)1097-4628(19990207)71:6<897:AID-APP5>3.0.CO;2-9

    Article  Google Scholar 

  53. Zhang Y, Li X, Wei X (2010) Non-isothermal crystallization kinetics of isotactic polypropylene nucleated with 1,3:2,4-bis(3,4-dimethylbenzylidene) sorbitol. J Therm Anal Calorim 100:661–665. doi:10.1007/s10973-009-0372-1

    Article  Google Scholar 

  54. Dobreva A, Gutzow I (1993) Activity of substrates in the catalyzed nucleation of glass-forming melts I. Theory. J Non-Cryst Solids 162:1–12. doi:10.1016/0022-3093(93)90736-H

    Article  Google Scholar 

  55. Dobreva A, Gutzow I (1993) Activity of substrates in the catalyzed nucleation of glass-forming melts II. Experimental evidence. J Non-Cryst Solids 162:13–25. doi:10.1016/0022-3093(93)90737-I

    Article  Google Scholar 

  56. Augis JA, Bennett JE (1978) Calculation of the Avrami parameters for heterogeneous solid state reactions using a modification of the Kissinger method. J Therm Anal 13:283–292. doi:10.1007/BF01912301

    Article  Google Scholar 

  57. Jiang Z, Jin J, Xiao C, Li X (2011) Effect of high content of carbon black on non-isothermal crystallization behavior of poly(ethylene terephthalate). Polym Bull 67:1633–1648. doi:10.1007/s00289-011-0555-3

    Article  Google Scholar 

  58. Oburoğlu N, Ercan N, Durmus A, Kaşgöz A (2012) Effects of filler type on the nonisothermal crystallization kinetics of poly(butylene terephthalate) (PBT) composites. J Appl Polym Sci 123:77–91. doi:10.1002/app.34464

    Article  Google Scholar 

  59. Ge C, Shi L, Yang H, Tang S (2010) Nonisothermal melt crystallization kinetics of poly(ethylene terephthalate)/barite nanocomposites. Polym Compos 31:1504–1514. doi:10.1002/pc.20937

    Article  Google Scholar 

  60. Doye JPK, Frenkel D (1998) Crystallization of a polymer on a surface. J Chem Phys 109:10033. doi:10.1063/1.477672

    Article  Google Scholar 

  61. Raimo M, Cascone E, Martuscelli E (2001) Melt crystallisation of polymer materials: the role of the thermal conductivity and its influence on the microstructure. J Mater Sci 36:3591–3598. doi:10.1023/A:1017936406839

    Article  Google Scholar 

Download references

Acknowledgements

Authors are grateful to the Indian Institute of Technology Delhi and Ministry of Human Resource Development for providing fellowship to Rishi Sharma.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saurindra Nath Maiti.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 172270 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, R., Maiti, S.N. Effects of SEBS-g-MA copolymer on non-isothermal crystallization kinetics of polypropylene. J Mater Sci 50, 447–456 (2015). https://doi.org/10.1007/s10853-014-8604-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8604-6

Keywords

Navigation