Skip to main content

Advertisement

Log in

A facile way to fabricate graphene sheets on TiO2 nanotube arrays for dye-sensitized solar cell applications

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Large-area graphene sheets on TiO2 nanotube arrays (RGO/TNAs) were fabricated using a simple electrochemical method. The RGO content loaded on the arrays was controlled by changing the electrochemical reaction time. The microstructures and properties of RGO/TNAs were characterized and measured using field emission scanning electron microscopy, X-ray diffraction pattern, X-ray photoelectron spectroscopy, FT-IR spectra, and ultraviolet–visible (UV–Vis) spectroscopy. The results indicated that an appropriate reaction time clearly enhances photoelectrochemical properties, while excessive RGO loading significantly lowers their performance. Remarkably, in sharp contrast to the dye-sensitized solar cells prepared by TNAs as photoanode, the RGO/TNAs showed a significantly enhanced power conversion efficiency of 4.46 %. The improvement of light harvesting is due to the excellent property of RGO and the special structure of the composite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Scheme 1

Similar content being viewed by others

References

  1. Zhang J, Xu Q, Feng Z, Li M, Li C (2008) Importance of the relationship between surface phases and photocatalytic activity of TiO2. Angew Chem Int Ed 47:1766–1769

    Article  Google Scholar 

  2. Jen HP, Lin MH, Li LL, Wu HP, Huang WK, Cheng PJ, Diau EWG (2013) High-performance large-scale flexible dye-sensitized solar cells based on anodic TiO2 nanotube arrays. ACS Appl Mater Interfaces 5:10098–10104

    Article  Google Scholar 

  3. Varghese OK, Paulose M, Grimes CA (2009) Long vertically aligned titania nanotubes on transparent conducting oxide for highly efficient solar cells. Nat Nanotechnol 4:592–597

    Article  Google Scholar 

  4. Mor GK, Varghese OK, Paulose M, Shankar K, Grimes CA (2006) A review on highly ordered, vertically oriented TiO2 nanotube arrays: fabrication, material properties, and solar energy applications. Sol Energy Mater Sol Cells 90:2011–2075

    Article  Google Scholar 

  5. Wang XL, Zheng J, Sui XT, Xie H, Liu BS, Zhao XJ (2013) CdS quantum dots sensitized solar cells based on free-standing and through-hole TiO2 nanotube arrays. Dalton Trans 42:14726–14732

    Article  Google Scholar 

  6. Li GS, Wu L, Li F, Xu PP, Zhang DQ, Li HX (2013) Photoelectrocatalytic degradation of organic pollutants via a CdS quantum dots enhanced TiO2 nanotube array electrode under visible light irradiation. Nanoscale 5:2118–2125

    Article  Google Scholar 

  7. Galstyan V, Vomiero A, Concina I et al (2011) Vertically aligned TiO2 nanotubes on plastic substrates for flexible solar cells. Small 7:2437–2442

    Article  Google Scholar 

  8. Vomiero A, Galstyan V, Braga A (2011) Flexible dye sensitized solar cells using TiO2 nanotubes. Energy Environ Sci 4:3408–3413

    Article  Google Scholar 

  9. Asaki R, Morikawa T, Ohwaki T, Aoki K, Taga Y (2001) Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293(5528):269–271

    Article  Google Scholar 

  10. Chen XB, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev 107(7):2891–2959

    Article  Google Scholar 

  11. Wang HL, Robinson JT, Diankov G, Dai HJ (2010) Nanocrystal growth on graphene with various degrees of oxidation. J Am Chem Soc 132:3270–3271

    Article  Google Scholar 

  12. Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Kim KS et al (2009) Large scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457(7230):706–710

    Article  Google Scholar 

  13. Geim AK (2009) Graphene: status and prospects. Science 324(5934):1530–1534

    Article  Google Scholar 

  14. Jiang G, Lin Z, Chen C, Zhu L, Chang Q, Wang N et al (2011) TiO 2 nanoparticles assembled on graphene oxide nanosheets with high photocatalytic activity for removal of pollutants. Carbon 49:2693–2701

    Article  Google Scholar 

  15. Fan WQ, Lai QH, Zhang QH, Wang Y (2011) Nanocomposites of TiO 2 and reduced graphene oxide as efficient photocatalysts for hydrogen evolution. J Phys Chem C 115:10694–10701

    Article  Google Scholar 

  16. Liu CB, Teng YR, Liu RH, Luo SL, Tang YH, Chen LY, Cai QY (2011) Fabrication of graphene films on TiO 2 nanotube arrays for photocatalytic application. Carbon 49:5312–5320

    Article  Google Scholar 

  17. Song P, Zhang XY, Sun MX, Cui XL, Lin YH (2012) Graphene oxide modified TiO2 nanotube arrays: enhanced visible light photoelectrochemical properties. Nanoscale 4:1800–1804

    Article  Google Scholar 

  18. Yun JH, Wong RJ, Ng YH, Du A, Amal R (2012) Combined electrophoretic deposition-anodization method to fabricate reduced graphene oxide-TiO 2 nanotube films. RSC Adv 2:8164–8171

    Article  Google Scholar 

  19. Xian JJ, Li DZ, Chen J, Li XF, He M, Shao Y, Yu LH, Fang JL (2014) A large-area smooth graphene film on a TiO2 nanotube array via a one-step electrochemical process. J Mater Chem A 2:5187–5192

    Article  Google Scholar 

  20. Wang Y, Li Z, Tian YF, Zhao W, Liu XQ, Yang JB (2014) Facile method for fabricating silver-doped TiO2 nanotube arrays with enhanced photoelectrochemical property. Mater Lett 122:248–251

    Article  Google Scholar 

  21. William S, Hummers JR, Richard EO (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339

    Article  Google Scholar 

  22. Yu JG, Fan JJ, Cheng B (2011) Dye-sensitized solar cells based on anatase TiO2 hollow spheres/carbon nanotube composite films. J Power Sources 196:7891–7898

    Article  Google Scholar 

  23. Liu XJ, Pan LK, Zhao QF, Lv T, Zhu G, Chen TQ, Lu T, Sun Z, Sun CQ (2012) UV assisted photocatalytic synthesis of ZnO-reduced graphene oxide composites with enhanced photocatalytic activity in reduction of Cr(VI). Chem Eng J 183:540–549

    Google Scholar 

  24. Wang DT, Li X, Chen JF, Tao X (2012) Enhanced photoelectrocatalytic activity of reduced graphene oxide/TiO2 composite films for dye degradation. Chem Eng J 198–199:547–554

    Article  Google Scholar 

  25. Li Q, Guo BD, Yu JG, Ran JR, Zhang BH, Yan HJ, Gong JR (2011) Highly efficient visible-light-driven photocatalytic hydrogen production of CdS-cluster-decorated graphene nanosheets. J Am Chem Soc 133:10878–10884

    Article  Google Scholar 

  26. Zhang YH, Tang ZR, Fu XZ, Xu YJ (2011) Engineering the unique 2D mat of graphene to achieve graphene-TiO2 nanocomposite for photocatalytic selective transformation: what advantage does graphene have over its forebear carbon nanotube? ACS Nano 5:7426–7435

    Article  Google Scholar 

  27. Nethravathi C, Rajamathi M (2008) Chemically modified graphene sheets produced by the solvothermal reduction of colloidal dispersions of graphite oxide. Carbon 46:1994–1998

    Article  Google Scholar 

  28. Xiang QJ, Yu JG, Jaroniec M (2011) Preparation and enhanced visible-light photocatalytic H2-production activity of graphene/C3N4 composites. J Phys Chem C 115:7355–7363

    Article  Google Scholar 

  29. Shen J, Yan B, Shi M, Ma H, Li N, Ye M (2011) One step hydrothermal synthesis of TiO2-reduced graphene oxide sheets. J Mater Chem 21:3415–3421

    Article  Google Scholar 

  30. Dembele KT, Selopal GS, Soldano C et al (2013) Hybrid carbon nanotubes-TiO2 photoanodes for high efficiency dye-sensitized solar cells. J Phys Chem C 117:14510–14517

    Article  Google Scholar 

  31. Fan ZJ, Yan J, Wei T, Zhi LJ, Ning GQ, Li TY, Wei F (2011) Asymmetric supercapacitors based on graphene/MnO2 and activated carbon nanofiber electrodes with high power and energy density. Adv Funct Mater 21:2366–2375

    Article  Google Scholar 

  32. An GM, Ma WH, Sun ZY, Liu ZM et al (2007) Preparation of titania/carbon nanotube composites using supercritical ethanol and their photocatalytic activity for phenol degradation under visible light irradiation. Carbon 45:1795–1801

    Article  Google Scholar 

  33. Wang Y, Shao Y, Matson DW, Li J, Lin Y (2010) Nitrogen-doped graphene and its application in electrochemical biosensing. ACS Nano 4:1790–1798

    Article  Google Scholar 

  34. Zhang J, Pan C, Fang P, Wei J, Xiong R (2010) Mo + C codoped TiO2 using thermal oxidation for enhancing photocatalytic activity. ACS Appl Mater Interfaces 2:1173–1176

    Article  Google Scholar 

  35. Sun X, Xie M, Wang GK et al (2012) Atomic layer deposition of TiO2 on graphene for supercapacitors. J Electrochem Soc 159(4):A364–A369

    Article  Google Scholar 

  36. Zhang YP, Pan CX (2011) TiO2/graphene composite from thermal reaction of grapheme oxide and its photocatalytic activity in visible light. J Mater Sci 46:2622–2626

    Article  Google Scholar 

  37. Williams G, Seger B, Kamat PV (2008) TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide. ACS Nano 2:1487–1491

    Article  Google Scholar 

  38. Fan JJ, Liu SW, Yu JG, Eda G (2012) Enhanced photovoltaic performance of dye-sensitized solar cells based on TiO2 nanosheets/graphene composite films. J Mater Chem 22:15027–15036

  39. Chang JL, Yang JL, Ma PF, Wu DP, Tian L, Gao ZY, Jiang K, Yang L (2013) Hierarchical titania mesoporous sphere/graphene composite, synthesis and application as photoanode in dye sensitized solar cells. J Coll Interfac Sci 394:231–236

    Article  Google Scholar 

  40. Madhavan AA, Kalluri S, Chacko DK et al (2012) Electrical and optical properties of electrospun TiO2-graphene composite nanofibers and its application as DSSC photo-anodes. RSC Adv 2:13032–13037

    Article  Google Scholar 

  41. Lee KM, Hu CW, Chen HW, Ho KC (2008) Incorporating carbon nanotube in a low-temperature fabrication process for dye-sensitized TiO2 solar cells. Sol Energy Mater Sol Cells 92:1628–1633

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Li, Z., Tian, Y. et al. A facile way to fabricate graphene sheets on TiO2 nanotube arrays for dye-sensitized solar cell applications. J Mater Sci 49, 7991–7999 (2014). https://doi.org/10.1007/s10853-014-8506-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8506-7

Keywords

Navigation