Skip to main content
Log in

Cryogenic equal channel angular pressing of commercially pure titanium: microstructure and properties

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Cylindrical samples of CP Titanium (Grade 2) were deformed by one, two and three passes of equal channel angular pressing (ECAP) each at temperatures 77, 300 and 575 K, respectively. The microstructure of samples processed at 77 K shows retardation of recrystallisation, high density of dislocations and deformation twins, diffuse and obscure grain boundaries compare to microstructure of samples processed at room and high temperature, where recrystallised ultrafine equiaxed grains are observed. Mechanical properties for all structural states of Ti were studied by microhardness measurements at 300 K and uniaxial compression at temperatures 300, 170, 77 and 4.2 K. Higher levels of ECAP deformation (more passes of ECAP) lead to higher values of strength and hardness at all studied temperatures. Decrease of ECAP temperature leads to increase of strength characteristics in all cases. Influence of ECAP and compression temperatures on possible changes of deformation mechanism are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Nam WJ, Lee YB, Dong DH (2004) Ultrafine grained bulk 5083 Al alloy produced by cryogenic rolling process. Mater Sci Forum 449–452:141–144

    Article  Google Scholar 

  2. Moskalenko VA, Smirnov AR, Moskalenko AV (2009) Nanocrystalline titanium produced by the cryomechanical method: microstructure and mechanical properties. Low Temp Phys 35:1160–1164

    Article  Google Scholar 

  3. Yin J, Lu J, Zhang P (2004) Nanostructural formation of fine grained aluminum alloy by severe plastic deformation at cryogenic temperature. J Mater Sci 39:2851–2854. doi:10.1023/B:JMSC.0000021463.83899.b3

    Article  Google Scholar 

  4. Kon’kova TN, Mironov SY, Korznikov AV (2010) Severe cryogenic deformation of copper. Phys Metal Metallogr 109:171–176

    Article  Google Scholar 

  5. Podolskiy AV, Mangler C, Schafler E, Tabachnikova ED, Zehetbauer MJ (2013) Microstructure and mechanical properties of high purity nanostructured titanium processed by high pressure torsion at temperatures 300 and 77 K. J Mater Sci 48:4689–4697. doi:10.1007/s10853-013-7276-y

    Article  Google Scholar 

  6. Chen YJ, Roven HJ, Gireesh SS, Skaret P, Hjelen J (2011) Quantitative study of grain refinement in Al–Mg alloy processed by equal channel angular pressing at cryogenic temperature. Mater Lett 65:3472–3475

    Article  Google Scholar 

  7. Fritsch S, Scholze M, Wagner MF-X (2012) Cryogenic forming of AA7075 by equal-channel angular pressing. Mater Werkst 43:561–566

    Article  Google Scholar 

  8. Kutniy KV, Volchok OI, Kislyak IF, Tikhonovsky MA, Storozhilov GE (2011) Obtaining of pure nanostructured titanium for medicine by severe deformation at cryogenic temperatures. Mater. Werkst. 42:114–117

    Article  Google Scholar 

  9. Lapovok R, Molotnikov A, Levin Y, Bandaranayake A, Estrin Y (2012) Machining of course grained and ultrafine grained titanium. J Mater Sci 47:4589–4594. doi:10.1007/s10853-012-6320-7

    Article  Google Scholar 

  10. Segal VM (1995) Materials processing by simple shear. Mater Sci Eng A 197:157–164

    Article  Google Scholar 

  11. Lapovok R, Tomus D, Muddle BC (2008) Low-temperature compaction of Ti–6Al–4V powder using equal channel angular extrusion with back-pressure. Mater Sci Eng A 490:171–180

    Article  Google Scholar 

  12. Lapovok R, Estrin Y, Popov MV, Langdon TG (2008) Enhanced superplasticity in a magnesium alloy processed by equal-channel angular pressing with a back-pressure. Adv Eng Mater 10:429–433

    Article  Google Scholar 

  13. Kovaleva VN, Moskalenko VA, Natsik VD (1994) Barrier parameters and statistics controlling the plasticity of Ti–O solid solutions in the temperature range 20–550 K. Phil Mag A 70:423–438

    Article  Google Scholar 

  14. Evans A, Rawlings R (1969) The thermally activated deformation of crystalline materials. Phys Stat Solidi 34:9–31

    Article  Google Scholar 

  15. Pustovalov VV (2008) Serrated deformation of metals and alloys at low temperatures. Low Temp Phys 34:683–723

    Article  Google Scholar 

  16. Tabachnikova ED, Bengus VZ, Podolskiy AV, Smirnov SN, Gunderov DV, Valiev RZ (2006) Low temperature mechanical properties of different commercial purity nanostructured titanium processed by ECA pressing. Mater Sci Forum 503–504:633–638

    Article  Google Scholar 

  17. Li L, Anderson PM, Lee MG, Bitzck E, Derlet P, Swygenhoven HV (2009) The stress-strain response of nanocrystalline metals: a quantized crystal plasticity approach. Acta Mater 57:812–822

    Article  Google Scholar 

  18. Tabachnikova ED, Podolskiy AV, Smirnov SN, Psaruk IA, Bengus VZ, Li H, Li L, Chu H, Liao PK (2012) Thermal activation plasticity of nanocrystalline Ni-18.75 at.% Fe alloy in temperature range 4.2–350 K. Low Temp Phys 38:239–247

    Article  Google Scholar 

  19. Kocks F, Argon AS, Ashby MF (1975) Thermodynamics and kinetics of slip. Progr Mater Sci 19:1–288

    Article  Google Scholar 

  20. Zehetbauer MJ, Zhu YT (eds) (2009) Bulk nanostructured materials. Wiley, Weinheim

    Google Scholar 

  21. Wang Y, Ma E (2004) Three strategies to achieve uniform tensile deformation in a nanostructured metal. Acta Mater 52:1699–1709

    Article  Google Scholar 

  22. Zwicker U (1974) Titan und Titanlegierungen. Springer, Berlin

    Book  Google Scholar 

  23. Meyers MA, Mishra A, Benson DJ (2006) Mechanical properties of nanocrystalline materials. Progr Mater Sci 51:427–556

    Article  Google Scholar 

  24. Asaro J, Suresh S (2005) Mechanistic models for the activation volume and rate sensitivity in metals with nanocrystalline grains and nano-scale twins. Acta Mater 53:3369–3382

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Podolskiy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Podolskiy, A.V., Ng, H.P., Psaruk, I.A. et al. Cryogenic equal channel angular pressing of commercially pure titanium: microstructure and properties. J Mater Sci 49, 6803–6812 (2014). https://doi.org/10.1007/s10853-014-8382-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8382-1

Keywords

Navigation