Skip to main content
Log in

Self-organized patterned arrays of Au and Ag nanoparticles by thickness-dependent dewetting of template-confined films

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this work we report on the formation of self-organized and multimodal sized patterned arrays of Au and Ag nanoparticles on SiO2 surface exploiting the thickness-dependent solid-state dewetting properties of template-confined deposited nanoscale films. In this approach, the Au and Ag surface pattern order, on the SiO2 substrate, is established by the template confined deposition on a micrometric scale, while the solid-state dewetting phenomenon is induced by thermal processes (below the Au and Ag melting temperature). The deposited films have not an uniform thickness. They, instead, present a controlled thickness due to shadowing mask effects during depositions. Such an inhomogeneity can be further controlled by changing the deposition angle. After the dewetting process, scanning electron microscopy analyses allowed us to correlate the mean diameter 〈D〉 and spacing 〈s〉 of the formed nanoparticles by the thickness h of the deposited films. Despite the dewetting process of the Au and Ag films occurs in the solid state, relations describing the evolution of 〈D〉 and 〈s〉 with 〈h〉 typical of the linear hydrodynamic spinodal dewetting process of liquid films, 〈D〉 ∝ h 5/3 and 〈s〉 ∝ h 2, were verified within a 20 % experimental error. As a consequence we call this process “pseudo-spinodal dewetting”.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Li Y, Somorjai GA (2010) Nanoscale advances in catalysis and energy applications. Nano Lett 10:2289–2295

    Article  Google Scholar 

  2. Mahmoud MA, Saira F, El-Sayed MA (2010) Experimental evidence for the nanocage effect in catalysis with hollow nanoparticles. Nano Lett 10:3764–3769

    Article  Google Scholar 

  3. Zeng J, Zhang Q, Chen J, Xia Y (2010) A comparison study of the catalytic properties of Au-based nanocages, nanoboxes, and nanoparticles. Nano Lett 10:30–35

    Article  Google Scholar 

  4. Hashmi ASK (2010) Homogeneous gold catalysis beyond assumptions and proposals—characterized intermediates. Angew Chem Int Ed 49:5232–5241

    Article  Google Scholar 

  5. Ko H, Singamaneni S, Tsukruk VV (2008) Nanostructured surfaces and assemblies as SERS media. Small 4:1576–1599

    Article  Google Scholar 

  6. Tripp RA, Dluhy RA, Zhao Y (2008) Novel nanostructures for SERS biosensing. Nano Today 3:31–37

    Article  Google Scholar 

  7. Smith WE (2008) Practical understanding and use of surface enhanced Raman scattering/surface enhanced resonance Raman scattering in chemical and biological analysis. Chem Soc Rev 37:955–964

    Article  Google Scholar 

  8. Stewart ME, Anderton CR, Thompson LB, Maria J, Gray SK, Rogers JA, Nuzzo RG (2008) Nanostructured plasmonic sensors. Chem Rev 108:494–521

    Article  Google Scholar 

  9. Hong AJ, Liu CC, Wang Y, Kim J, Xiu FX, Ji SX, Zou J, Nealey PF, Wang KL (2010) Metal nanodot memory by self-assembled block copolymer lift-off. Nano Lett 10:224–229

    Article  Google Scholar 

  10. Conoci S, Petralia S, Samori P, Raymo FM, Bella SD, Sortino S (2006) Optically transparent, ultrathin Pt films as versatile metal substrates for molecular optoelectronics. Adv Funct Mater 16:1425–1432

    Article  Google Scholar 

  11. Giljohann DA, Seferos DS, Daniel WL, Massich MD, Patel PC, Mirkin CA (2010) Gold nanoparticles for biology and medicine. Angew Chem Int Ed 49:3280–3294

    Article  Google Scholar 

  12. Maier SA (2007) Plasmonics: fundamentals and applications. Springer, New York

    Google Scholar 

  13. Akimov YA, Koh WS (2010) Resonant and nonresonant plasmonic nanoparticle enhancement for thin-film silicon solar cells. Nanotechnology 21:235201

    Article  Google Scholar 

  14. Qu D, Liu F, Yu J, Xie W, Xu Q, Li X, Huang Y (2011) Plasmonic core-shell gold nanoparticle enhanced optical absorption in photovoltaic devices. Appl Phys Lett 98:113119

    Article  Google Scholar 

  15. Yu DP, Xing YJ, Hang QL, Yan HF, Xu J, Xi ZH, Feng SQ (2001) Controlled growth of oriented amorphous silicon nanowires via a solid-liquid-solid (SLS) mechanism. Phys E 9:305–309

    Article  Google Scholar 

  16. Chowalla M, Teo KBK, Ducati C, Rupesinghe NL, Amaratunga GAJ, Ferrari AC, Roy D, Robertson J, Milne WI (2001) Growth process conditions of vertically aligned carbon nanotubes using plasma enhanced chemical vapor deposition. J Appl Phys 90:5308–5317

    Article  Google Scholar 

  17. Yoon YJ, Bae JC, Baik HK, Cho SJ, Lee SJ, Song KM, Myung NS (2002) Nucleation and growth control of carbon nanotubes in CVD process. Phys B 323:318–320

    Article  Google Scholar 

  18. Kwon JY, Yoon TS, Kim KB, Min SH (2003) Comparison of the agglomeration behavior of Au and Cu films sputter deposited on silicon dioxide. J Appl Phys 93:3270–3278

    Article  Google Scholar 

  19. Liu H, Cheng G, Zheng R, Zhao Y, Liang C (2008) Effects of the restructuring of Fe catalyst films on chemical vapor deposition of carbon nanotubes. Surf Coat Technol 202:3157–3163

    Article  Google Scholar 

  20. Ruffino F, Torrisi V, Marletta G, Grimaldi MG (2011) Atomic force microscopy investigation of the kinetic growth mechanisms of sputtered nanostructured Au film on mica: towards a nanoscale morphology control. Nanoscale Res Lett 6:112

    Article  Google Scholar 

  21. Ohring M (1992) The materials science of thin films. Academic Press, New York

    Google Scholar 

  22. Thompson CV (2012) Solid-state dewetting of thin films. Annu Rev Mater Res 42:399–434

    Article  Google Scholar 

  23. Tesler AB, Maoz BM, Feldman Y, Vaskevich A, Rubinstein I (2013) Solid-state thermal dewetting of just-percolated gold films evaporated on glass: development of the morphology and optical properties. J Phys Chem C 117:11337–11346

    Article  Google Scholar 

  24. Luber EJ, Olsen BC, Ophus C, Mitlin D (2010) Solid-state dewetting mechanisms of ultrathin Ni films revealed by combining in situ time resolved differential reflectometry monitoring and atomic force microscopy. Phys Rev B 82:85407

    Article  Google Scholar 

  25. Müller CM, Spolenak R (2013) Dewetting of Au and AuPt alloy films: a dewetting zone model. J Appl Phys 113:094301

    Article  Google Scholar 

  26. Giermann AL, Thompson CV (2005) Solid-state dewetting for ordered arrays of crystallographically oriented metal particles. Appl Phys Lett 86:121903

    Article  Google Scholar 

  27. Oh YJ, Ross CA, Jung YS, Wang Y, Thompson CV (2009) Cobalt nanoparticle arrays made by templated solid-state dewetting. Small 5:860–865

    Article  Google Scholar 

  28. Kim D, Giermann AL, Thompson CV (2009) Solid-state dewetting of patterned thin films. Appl Phys Lett 95:251903

    Article  Google Scholar 

  29. Ye J, Thompson CV (2010) Regular pattern formation through the retraction and pinch-off of edges during solid-state dewetting of patterned single crystal films. Phys Rev B 82:193408

    Article  Google Scholar 

  30. Ye J, Thompson CV (2011) Templated solid-state dewetting to controllably produce complex patterns. Adv Mater 23:1567–1571

    Article  Google Scholar 

  31. Jiran E, Thompson CV (1990) Capillary instabilities in thin films. J Electr Mater 19:1153–1160

    Article  Google Scholar 

  32. Jiran E, Thompson CV (1992) Capillary instabilities in thin, continuous films. Thin Solid Films 208:23–28

    Article  Google Scholar 

  33. Wang D, Ji R, Schaaf P (2011) Formation of precise 2D Au particle arrays via thermally induced dewetting on pre-patterned substrates. Beilstein J Nanotechnol 2:318–326

    Article  Google Scholar 

  34. Wang D, Schaaf P (2012) Thermal dewetting of thin Au films deposited onto line-patterned substrates. J Mater Sci 47:1605–1608

    Article  Google Scholar 

  35. Ruffino F, Grimaldi MG (2013) Template-confined dewetting of Au and Ag nanoscale films on mica substrate. Appl Surf Sci 270:697–706

    Article  Google Scholar 

  36. Ruffino F, Grimaldi MG (2013) Formation of patterned arrays of Au nanoparticles on SiC surface by template confined dewetting of normal and oblique deposited nanoscale films. Thin Solid Films 536:99–110

    Article  Google Scholar 

  37. de Gennes PG (1985) Wetting: statics and dynamics. Rev Mod Phys 57:827–863

    Article  Google Scholar 

  38. Geoghegan M, Krausch G (2003) Wetting at polymer surfaces and interfaces. Prog Polym Sci 28:261–302

    Article  Google Scholar 

  39. Müller-Buschbaum P (2003) Dewetting and pattern formation in thin polymer films as investigated in real and reciprocal space. J Phys Condens Matter 15:R1549–R1582

    Article  Google Scholar 

  40. Le F, Brandl DW, Urzhumov YA, Wang H, Kundu J, Halas NJ, Aizpurua J, Nordlander P (2008) Metallic nanoparticle arrays: a common substrate for both surface-enhanced raman scattering and surface-enhanced infrared absorption. ACS Nano 2:707–718

    Article  Google Scholar 

  41. Lukyanchuk B, Zheludev NI, Maier SA, Halas NJ, Nordlander P, Giessen H, Chong CT (2010) The Fano resonance in plasmonic nanostructures and metamaterials. Nat Mater 9:707–715

    Article  Google Scholar 

  42. Choe SY, Krauss PR, Renstrom PJ (1996) Imprint lithography with 25-nanometer resolution. Science 272:85–87

    Article  Google Scholar 

  43. Joo J, Chow BY, Jacobson JM (2006) Nanoscale patterning on insulating substrates by critical energy electron beam lithography. Nano Lett 6:2021–2025

    Article  Google Scholar 

  44. Salaita K, Wang Y, Fragala J, Vega RA, Liu C, Mirkin CA (2006) Massively parallel dip-pen nanolithography with 55000-pen two-dimensional arrays. Angew Chem Int Ed 45:7220–7223

    Article  Google Scholar 

  45. Choi Y, Hong S, Lee LP (2009) Shadow overlap ion-beam lithography for nanoarchitectures. Nano Lett 9:3726–3731

    Article  Google Scholar 

  46. Pazos-Perez N, Ni W, Schweikart A, Alvarez-Puebla RA, Fery A, Liz-Marzan LM (2010) Highly uniform SERS substrates formed by wrinkle-confined drying of gold colloids. Chem Sci 1:174–178

    Article  Google Scholar 

  47. Trice J, Thomas D, Favazza C, Sureshkumar R, Kalyanaraman R (2007) Pulsed-laser-induced dewetting in nanoscopic metal films: theory and experiments. Phys Rev B 75:235439

    Article  Google Scholar 

  48. www.tedpella.com/grids_html/gilder.htm

  49. Burger GJ, Smulders EJT, Berenschot JW, Lammerink TSJ, Fluitman JHJ, Imai S (1996) High-resolution shadow-mask patterning in deep holes and its application to an electrical wafer feed-through. Sens Actuators 54:669–673

    Article  Google Scholar 

  50. Egger S, Ilie A, Fu Y, Chongsathien J, Kang DY, Welland ME (2005) Dynamic shadow mask technique: a universal tool for nanoscience. Nano Lett 5:15–20

    Article  Google Scholar 

  51. Robbie K, Sit JC, Brett MJ (1998) Advanced techniques for glancing angle deposition. J Vac Sci Technol B 16:1115–1122

    Article  Google Scholar 

  52. Robbie K, Beydaghyan G, Brown T, Dean C, Adams J, Buzea C (2004) Ultrahigh vacuum glancing angle deposition system for thin films with controlled three-dimensional nanoscale structure. Rev Sci Instr 75:1089–1097

    Article  Google Scholar 

  53. Ruffino F, Canino A, Grimaldi MG, Giannazzo F, Bongiorno C, Roccaforte F, Raineri V (2007) Self-organization of gold nanoclusters on hexagonal SiC and SiO2 surfaces. J Appl Phys 101:064306

    Article  Google Scholar 

  54. Wenzel T, Bosbach J, Stietz F, Träger F (1999) In situ determination of the shape of supported silver clusters during growth. Surf Sci 432:257–264

    Article  Google Scholar 

  55. Ye J (2011) Solid state dewetting of continuous and patterned single crystal Ni thin films. http://dspace.mit.edu/handle/1721.1/69671.

  56. Mullins WW (1959) Flattening of a nearly plane solid surface due to capillarity. J Appl Phys 30:77–83

    Article  Google Scholar 

  57. Bollinne C, Cuenot S, Nysten B, Jonas AM (2003) Spinodal-like dewetting of thermodynamically-stable thin polymer films. Eur Phys J E 12:389–396

    Article  Google Scholar 

  58. Wensink KD, Jérôme B (2002) Dewetting induced by density fluctuations. Langmuir 18:413–416

    Article  Google Scholar 

  59. Sharma A, Mittal J, Verma R (2002) Instability and dewetting of thin films induced by density variations. Langmuir 18:10213–10220

    Article  Google Scholar 

  60. Wasa K, Kitabatake M, Adachi H (2004) Thin film materials technology-sputtering of compound materials. William Andrew Publishing, Norwich

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Italian projects PON01_01725 “Nuove Tecnologie Fotovoltaiche per Sistemi Intelligenti Integrati in Edifici”, PON02_00355_3391233 “ENERGETIC”, and by the EU project Grant agreement 316082 “WATER”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Ruffino.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruffino, F., Grimaldi, M.G. Self-organized patterned arrays of Au and Ag nanoparticles by thickness-dependent dewetting of template-confined films. J Mater Sci 49, 5714–5729 (2014). https://doi.org/10.1007/s10853-014-8290-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8290-4

Keywords

Navigation