Skip to main content
Log in

Effects of co-sintering in self-standing CGO/YSZ and CGO/ScYSZ dense bi-layers

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Viscoelastic properties and sintering mechanisms of tape-casted gadolinium-doped ceria (CGO), yttrium-stabilized zirconia (YSZ), and scandium–yttrium-stabilized zirconia (ScYSZ) are characterized in order to investigate the reciprocal thermo-mechanical compatibility when arranged as a self-standing bi-layered electrolyte system. The combined use of thermo-mechanical analysis, optical dilatometry, and scanning electron microscopy ensures a systematic characterization of both the individual layers and CGO/YSZ and CGO/ScYSZ bi-layered laminates. The results of the co-firing process of the bi-layers are critical due to the mismatch of thermo-mechanical and sintering properties among the materials. Despite the better sinteractivity of ScYSZ, the self-standing CGO/ScYSZ bi-layer presents more challenges in terms of densification compared with the CGO/YSZ bi-layer. In particular, above 1200 °C, ScYSZ and CGO show residual porosity, and at higher sintering temperatures, above 1300 °C, full densification is completely inhibited by constrained sintering phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Jacobson A (2010) Materials for solid oxide fuel cells. Chem Mater 22:660–674

    Article  Google Scholar 

  2. Laguna-Bercero MA (2012) Recent advances in high temperature electrolysis using solid oxide fuel cells: a review. J Power Sources 203:4–16

    Article  Google Scholar 

  3. Steele BCH, Heinzel A (2001) Materials for fuel-cell technologies. Nature 414:345–352

    Article  Google Scholar 

  4. Ivers-Tiffeé E, Weber A, Herbstritt D (2001) Materials and technologies for SOFC-components. J Eur Ceram Soc 21:1805–1811

    Article  Google Scholar 

  5. Yohokowa H, Sakai N, Horita T, Yamaji K (2001) Recent developments in solid oxide fuel cell materials. Fuel Cells 1:117–131

    Article  Google Scholar 

  6. Kim-Lohsoontorn P, Laosiripojana N, Bae J (2011) Performance of solid oxide electrolysis cell having bi-layered electrolyte during steam electrolysis and carbon dioxide electrolysis. Curr Appl Phys 11:S223–S228

    Article  Google Scholar 

  7. Horita T, Sakai N, Yokokawa H, Dokiya M, Kawada T, Herle JV, Sasaki K (1997) Ceria–zirconia composite electrolyte for solid oxide fuel cells. J Electroceram 2:155–164

    Google Scholar 

  8. Tompsett GA, Sammes NM (1997) Ceria–yttria-stabilized zirconia composite ceramic systems for applications as low-temperature electrolytes. J Am Ceram Soc 80:3181–3186

    Article  Google Scholar 

  9. Tsoga A, Gupta A, Naoumidis A, Skarmoutsos D, Nikolopoulos P (1998) Performance of a double-layer CGO/YSZ electrolyte for solid oxide fuel cells. Ionics 4:234–240

    Article  Google Scholar 

  10. Tsoga A, Naoumidis A, Gupta A, Stöver D (1999) Microstructure and interdiffusion phenomena in YSZ–CGO composite electrolyte. Mater Sci Forum 308–311:794–799

    Article  Google Scholar 

  11. Sammes NM, Tompsett GA, Cai Z (1999) The chemical reaction between ceria and fully stabilized zirconia. Solid State Ion 121:121–125

    Article  Google Scholar 

  12. Tsoga A, Naoumidis A, Stöver D (2000) Total electrical conductivity and defect structure of ZrO2–CeO2–Y2O3–Gd2O3 solid solutions. Solid State Ion 135:403–409

    Article  Google Scholar 

  13. Tsoga A, Gupta A, Naoumidis A, Nikolopoulos P (2000) Gadolinia-doped ceria and yttria stabilized zirconia interfaces: regarding their application for SOFC technology. Acta Mater 48:4709–4714

    Article  Google Scholar 

  14. Zhou X-D, Scarfino B, Anderson HU (2004) Electrical conductivity and stability of Gd-doped ceria/Y-doped zirconia ceramics and thin films. Solid State Ion 175:19–22

    Article  Google Scholar 

  15. Knibbe R, Hjelm J, Menon M, Pryds N, Søgaard M, Wang HJ, Neufeld K (2010) Cathode–electrolyte interfaces with CGO barrier layers in SOFC. J Am Ceram Soc 93:2877–2883

    Article  Google Scholar 

  16. Chang J, Guillon O, Rödel J, Kang S-KL (2008) Characterization of warpage behaviour of Gd-doped ceria/NiO–yttria stabilized zirconia bi-layer samples for solid oxide fuel cell application. J Power Sources 185:759–764

    Article  Google Scholar 

  17. Wang X, Tint S, Chiu M, Atkinson A (2012) Stiffness of free-standing thermal barrier coating top coats measured by bending tests. Acta Mater 60:3247–3258

    Article  Google Scholar 

  18. Atkinson A, Selçuk A (2000) Mechanical behavior of ceramic oxygen ion-conducting membranes. Solid State Ion 134:59–66

    Article  Google Scholar 

  19. Ni DW, Esposito V, Schmidt CG, Molla TT, Andersen KB, Kaiser A, Ramousse S, Pryds N (2013) Camber evolution and stress development of porous ceramic bi-layers during Co-firing. J Am Ceram Soc 96:972–978

    Article  Google Scholar 

  20. Lee SH, Messing GL, Green DJ (2004) Warpage evolution of screen printed multilayer ceramics during Co-firing. Key Eng Mater 264–268:321–328

    Article  Google Scholar 

  21. Howard SJ, Stewart RA, Clegg WJ (1996) Delamination of ceramic laminates due to residual thermal stresses. Key Eng Mater 116–117:331–350

    Article  Google Scholar 

  22. Venkatachari KR, Raj R (1986) Shear deformation and densification of powder compacts. J Am Ceram Soc 69:499–506

    Article  Google Scholar 

  23. Hsueh CH, Evans AG, Cannon RM, Brook RJ (1986) Viscoelastic stresses and sintering damage in heterogeneous powder compacts. Acta Metall 34:927–936

    Article  Google Scholar 

  24. Bordia RK, Raj R (1988) Sintering of TiO2–Al2O3 composites: a model experimental investigation. J Am Ceram Soc 71:302–310

    Article  Google Scholar 

  25. Cai PZ, Green DJ, Messing GL (1997) Determination of the mechanical response of sintering compacts by cyclic loading dilatometry. J Am Ceram Soc 80:445–452

    Article  Google Scholar 

  26. Lee S-H, Messing GL, Green DJ (2003) Bending creep test to measure the viscosity of porous materials during sintering. J Am Ceram Soc 86:877–882

    Article  Google Scholar 

  27. Bordia RK, Scherer GW (1988) On constrained sintering-I: constitutive model for a sintering body. On constrained sintering-II: comparison of constitutive models. On constrained sintering-III: rigid inclusions. Acta Metall 36:2393–2416

    Article  Google Scholar 

  28. Ni DW, Olevsky E, Esposito V, Molla TT, Foghmoes SPV, Bjørk R, Frandsen H, Aleksandrova E, Pryds N (2013) Sintering of multilayered porous structures: Part II—experiments and model applications. J Am Ceram Soc 96:2666–2673

    Article  Google Scholar 

  29. Ni DW, Schmidt CG, Teocoli F, Kaiser A, Andersen KB, Ramousse S, Esposito V (2013) Densification and grain growth during sintering of porous Ce0.9Gd0.1O1.95 tape cast layers: a comprehensive study on heuristic methods. J Eur Ceram Soc 33:2529–2530

    Article  Google Scholar 

  30. Raether F, Springer R, Beyer S (2001) Optical dilatometry for the control of microstructure development during sintering. Mater Res Innov 4:245–250

    Article  Google Scholar 

  31. Glasscock J, Esposito V, Foghmoes SPV, Stegk T, Matuschek D, Ley MWH, Ramousse S (2013) The effect of forming stresses on the sintering of ultra-fine Ce0.9Gd0.1O2-δ powders. J Eur Ceram Soc 33:1289–1296

    Article  Google Scholar 

  32. Olevsky E (1998) Theory of sintering: from discrete to continuum. Mater Sci Eng R23:41–100

    Article  Google Scholar 

  33. Olevsky E, Molla TT, Frandsen HL, Bjørk R, Esposito V, Ni DW, Aleksandrova E, Pryds N (2013) Sintering of multilayered porous structures: Part I—constitutive models. J Am Ceram Soc 98:2657–2665

    Article  Google Scholar 

  34. Delporte M (2009) A phenomenological approach to the prediction of material behaviours during co-sintering. Ph.D. Thesis, Bayerische Julius-Maximilians-Universität, Würzburg

  35. Bollina R, German RM (2004) In situ evaluation of viscosity during sintering of boron doped stainless steel using bending beam technique. Proceedings of world PM2004, Vienna. EPMA, Shrewsbury

  36. Ollagnier J-B, Guillon O, Rödel J (2010) Constrained sintering of a glass ceramic composite: asymmetric laminate. J Am Ceram Soc 93:74–81

    Article  Google Scholar 

  37. Guillon O, Kraüs S, Rödel J (2007) Influence of thickness on the constrained sintering of alumina films. J Eur Ceram Soc 27:2623–2627

    Article  Google Scholar 

Download references

Acknowledgements

The authors would to acknowledge the EUDP (Danish Energy Agency) Project 64012-0225 “SOFC accelerated,” for sponsoring this research work. The authors are grateful to Tim Holgate for his help with the proofreading.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesca Teocoli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teocoli, F., Ni, D.W., Brodersen, K. et al. Effects of co-sintering in self-standing CGO/YSZ and CGO/ScYSZ dense bi-layers. J Mater Sci 49, 5324–5333 (2014). https://doi.org/10.1007/s10853-014-8235-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8235-y

Keywords

Navigation