Skip to main content

Advertisement

Log in

Dielectric, ferroelectric and optical behaviour of terbium hydrogen tartrate trihydrate crystals

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Gel diffusion technique, using agar–agar as gel medium, has been employed to obtain single crystals of terbium hydrogen tartrate trihydrate. The grown crystals are characterised by X-ray diffraction, scanning electron microscopy, CHN technique, thermogravimetric methods and UV–Vis spectroscopy. Dielectric, ferroelectric and optical studies on this metal–organic compound have been carried out. The dielectric constant has been measured as a function of temperature and frequency in the ranges of 20–250 °C and 20 Hz–3 MHz, respectively. The study of dielectric behaviour as a function of temperature reveals two dielectric anomalies at 95 and 198 °C. The dielectric anomaly at 95 °C is suggested to be due to ferroelectric phase transition brought about in the material. The study of polarisation versus electric field shows a hysteresis loop which thereby confirms the ferroelectric nature of terbium hydrogen tartrate trihydrate crystals. The dielectric anomaly at 198 °C is suggested to be due to loss of water molecules in the compound. The results of thermal study show that the material is thermally stable up to temperature of about 200 °C. Optical studies show that the terbium hydrogen tartrate trihydrate crystal has good transparency in the entire visible and infra red range of the spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Hill DC, Tuller HL (1988) Ceramic sensors: theory and practice. Marcel Dekker, New York

    Google Scholar 

  2. Rabe KM, Ahn CH, Triscone JM (2007) Physics of ferroelectrics: a modern perspective. Springer, Berlin

    Google Scholar 

  3. Bibes M, Villegas JE, Barthelemy A (2011) Multiferroic phase transition near room temperature in BiFeO3 films. Adv Phys 60:5

    Article  Google Scholar 

  4. Haertling GH (1999) Ferroelectric ceramics: history and technology. J Am Ceram Soc 82:797–818

    Article  Google Scholar 

  5. Valasek J (1921) Piezo-electric and allied phenomenon in Rochelle salt. Phys Rev 17:475–481

    Article  Google Scholar 

  6. Cady WG (1964) Piezoelectricity. McGraw-Hill Book Co., New York

    Google Scholar 

  7. Jona F, Shriane G (1962) Ferroelectric crystals. Pergamon Press, London

    Google Scholar 

  8. Sandy F, Jones RV (1968) Dielectric relaxation of Rochelle salt. Phys Rev 168:481–493

    Article  Google Scholar 

  9. Busch G (1987) How i discovered the ferroelectric properties of KH2PO4. Ferroelectrics 71:43–47

    Article  Google Scholar 

  10. Wul BM, Goldman IM (1945) Dielectric constant of barium titanate as a function of strength of an alternating field. Dokl Akad Nauk SSSR 46:154–157

    Google Scholar 

  11. Hippel AV, Breckenridge RG, Chesley FG, Tisza L (1946) High dielectric constant ceramics. Ind Eng Chem 38:1097

    Article  Google Scholar 

  12. Shirane G, Suzuki K, Tukeda A (1952) Phase transitions in solid solutions of PbZrO3 and PbTiO3 (II) X-ray. J Phys Soc Jpn 7:12

    Article  Google Scholar 

  13. Shirane G, Suzuki K (1952) Crystal structure of Pb (Zr–Ti)O3. J Phys Soc Jpn 7:333

    Article  Google Scholar 

  14. Kirillov VV, Isupov VA (1973) Relaxation polarization of PbMg1/3Nb2/3O3 (PMN): a ferroelectric with a diffused phase transition. Ferroelectric 5:3–9

    Article  Google Scholar 

  15. Zhou B, Kobayashi A, Cui HB, Long LS, Fujimori H, Kobayashi H (2011) Anomalous dielectric behaviour and thermal motion of water molecules confined in channels of porous coordination polymer crystals. J Am Chem Soc 133:5736–5739

    Article  Google Scholar 

  16. Xu GC, Zhang W, Ma XM, Chen YH, Zhang L, Cai HL, Wang ZM, Xiong RG, Gao S (2011) Coexistence of magnetic and electric orderings in the metal-formate frameworks of [NH4][M(HCOO)3]. J Am Chem Soc 133:14948–14951

    Article  Google Scholar 

  17. Jain P, Ramachandran V, Clark RJ, Zhou HD, Toby BH, Dalal NS, Kroto HW, Cheetham AK (2009) Multiferroic behavior associated with an order–disorder hydrogen bonding transition in metal–organic frameworks (MOFs) with the perovskite ABX3 architecture. J Am Chem Soc 131:13625–13627

    Article  Google Scholar 

  18. Scott JF (2013) Room temperature multiferroic magnetoelectrics. NPG Asia Mater 5:e72

    Article  Google Scholar 

  19. Hang T, Zhang W, Ye HY, Xiong RG (2011) Metal organic complex ferroelectrics. Chem Soc Rev 40:3577–3598

    Article  Google Scholar 

  20. Aspinall Helen C (2002) Chiral lanthanide complexes: coordination chemistry and applications. Chem Rev 102:1807–1850

    Article  Google Scholar 

  21. Henisch HK (1988) Crystals in gels and liesegang rings. Cambridge University Press, Cambridge

    Book  Google Scholar 

  22. Sharma S, Sati R, Choudhary RNP, Sinha TP (1993) Diffuse phase transition in solid solution of Pb(Mg14Zn14Nb12)O3−δ & PbTiO3. Mater Lett 16:281–285

    Article  Google Scholar 

  23. Dana ES (1922) A text book of mineralogy: crystallography and physical mineralogy, vol 85. John Wiley & sons, New York

    Google Scholar 

  24. Grazulis S, Daskevic A, Merkys A, Chateigner D, Lutterotti L, Quiros M, Serebryanaya NR, Moeck P, Downs RT, Bail AL (2012) Crystallography open database (COD). Nucl Acids Res 40:D420–D427

    Article  Google Scholar 

  25. De WC, Ping ZX, Zhong LC, Hui ZH, Shun HJ (2002) Poly[triaqua(μ-hydrogen tartrato)(μ-tartrato) samarium(III) tartrate. Acta Crystallogr E 58:228

    Google Scholar 

  26. Jonscher AK (1975) A new model of dielectric loss in polymers. Colloid Polym Sci 253:231–250

    Article  Google Scholar 

  27. Dissado LA, Hill RM (1983) A cluster approach to the structure of imperfect materials and their relaxation spectroscopy. Proc Roy Soc London 390:131–180

    Article  Google Scholar 

  28. Dissado LA, Hill RM (1984) Anomalous low frequency dispersion near direct current conductivity in disordered low-dimensional materials. J Chem Soc Faraday Trans 80:291–319

    Article  Google Scholar 

  29. Jonscher AK (1992) The universal dielectric response and its physical significance. IEEE Trans Electron Insul 27:407–423

    Article  Google Scholar 

  30. Jonscher AK (1977) The universal dielectric response. Nature 267:673–679

    Article  Google Scholar 

  31. Jonscher AK (1981) A new understanding of the dielectric relaxation of solids. J Mater Sci 16:2037–2060. doi:10.1007/BF00542364

    Article  Google Scholar 

  32. Ingram MD (1987) Ionic conductivity in glass. Phys Chem Glasses 28:215–234

    Google Scholar 

  33. Vuilleumier R, Borgis D (2012) Proton conduction: hopping along hydrogen bonds. Nat Chem 4:432–433

    Article  Google Scholar 

  34. Arora AK, Tandon RP, Mansingh A (1992) Piezoelectric, pyroelectric and dielectric properties of lanthanum modified lead zirconate titanate ceramics. Ferroelectrics 132:9–25

    Article  Google Scholar 

  35. Rukmini HR, Choudary RNP, Prabhakara DL (2000) Sintering temperature dependent ferroelectric phase transition of Pb0.91(La1−z/3Liz)0.09(Zr0.65Ti0.35)0.9775O3. J Phys Chem Solids 61:1735–1743

    Article  Google Scholar 

  36. Rukmini HR, Choudhary RNP, Rao VV (1998) Diffuse phase transition in Pb0.91(La1−z/3Liz)0.09(Zr0.65Ti0.35)0.9775O3 ceramics. J Phys Chem Solids 59:1541–1548

    Article  Google Scholar 

  37. Prasad K (2000) Diffuse phase transition in perovskite ferroelectrics, Indian. J Eng Mater Sci 7:446–450

    Google Scholar 

  38. Bera S, Choudhary RNP (1995) Structural, SEM and electrical properties of Pb(Li1/4Y1/4W1/2)O3. Mater Lett 22:197–201

    Article  Google Scholar 

  39. Mahamoud H, Louati B, Hlel F, Guidara K (2011) Conductivity and dielectric studies on (Na0.4Ag0.6)2PbP2O7 compound. Bull Mater Sci 34:1067–1075

    Article  Google Scholar 

  40. Higuchi T, Tsukamoto T, Yamaguchi S, Sata N, Hiramoto K, Ishigame M, Shin S (2002) Protonic conduction in the single crystal of Sc-doped SrZrO3 Jpn. J Appl Phys 41:6440–6442

    Article  Google Scholar 

  41. Kumar S, Kaur B, Kotru PN, Bamzai KK (2006) Dielectric, ferroelectric and thermal studies of gel grown yttrium tartrate (YT) crystals. Ferroelectrics 332:167–185

    Article  Google Scholar 

  42. Fujimura N, Ishida T, Yoshimura T, Ito T (1996) Epitaxially grown YMnO3 film: new candidate for non-volatile memory devices. Appl Phys Lett 69:1011–1013

    Article  Google Scholar 

  43. Lotey GS, Verma NK (2012) Structural, magnetic, and electrical properties of Gd-doped BiFeO3 nanoparticles with reduced particle size. J Nanopart Res 14:742–747

    Article  Google Scholar 

  44. Zhao H, Qu ZR, Ye Q, Abrahams BF, Wang YP, Liu Z-G, Xue Z, Xiong RG, You XZ (2003) Ferroelectric copper quinine complexes. Chem Mater 15:4166–4168

    Article  Google Scholar 

  45. Pan CY, Hu S, Li DG, Ouyang P, Zhao FH, Zheng YY (2010) The first ferroelectric templated borate: [Ni(en)2pip][B5O6(OH)4]2. Dalton Trans 39(25):5772–5773. doi:10.1039/b925906f

    Article  Google Scholar 

  46. Kumaria PNS, Kalainathan S (2008) Characterization of lead (II) chloride single crystals grown in silica gel. Cryst Res Technol 43:413–416

    Article  Google Scholar 

  47. Kalaisevi D, Kumar RM, Jayavel R (2008) Single crystal growth and properties of semiorganic non linear optical l-arginine hydrochloride monohydrate crystals. Cryst Res Technol 43:851–856

    Article  Google Scholar 

Download references

Acknowledgements

The author (BW) is highly thankful to the Science and Engineering Research Board (SERB), Government of India for providing financial support under the Project No. SR/S2/CMP-0102/2012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Basharat Want.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Want, B., Samad, R. Dielectric, ferroelectric and optical behaviour of terbium hydrogen tartrate trihydrate crystals. J Mater Sci 49, 4891–4898 (2014). https://doi.org/10.1007/s10853-014-8190-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8190-7

Keywords

Navigation