Skip to main content
Log in

Natural clinoptilolite–zeolite loaded with iron for aromatic hydrocarbons removal from aqueous solutions

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The aim of this work is to explore the potential use as catalyst in aromatic hydrocarbons removal, a natural zeolite loaded with zerovalent iron. For this purpose, an iron precursor, FeSO4·7H2O, was first imbibed, later reduced and confined on the surface and/or inside of a zeolite, being present in a form of α-Fe nanoparticles with good catalytic properties. The supported catalyst samples were characterized structurally and morphologically. Benzene was selected to represent the organic contamination in these experiments. Fixed bed experiments were conducted using a vertical glass column. A saturated aqueous benzene solution (22.5 mM) was continuously pumped (0.5 ml/min) into the column simultaneously with the amount of H2O2 (30 %) necessary (12.5 ml) for the reaction in up flow mode. The pH was fixed at 3–4 with a buffer solution. All experiments were performed at 20 °C. The hydraulic retention time of benzene inside the column was estimated in 40 min. Benzene degradation, in the presented experimental conditions, is near 80 % and the process shows good stability for at least 600 min. Neither Fe(II) nor Fe(III) is detected in the eluded solution. This novel heterogeneous catalyst was demonstrated as a potent Fenton catalyst which provided an attractive alternative for the treatment of organic pollutants in water/wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Fenton HJH (1894) J Chem Soc 65:899

    Article  CAS  Google Scholar 

  2. Haber F, Weiss J (1934) R Soc London (A) 147:332

    Article  CAS  ADS  Google Scholar 

  3. Walling C (1975) Chem Res 8:121

    Google Scholar 

  4. Nyens E, Baeyens J (2003) J Hazard Mater B98:33

    Article  Google Scholar 

  5. Aleksić M, Kušić H, Koprivanac N, Leszczynska D, LončarićBožić A (2010) Desalination 257:22

    Article  Google Scholar 

  6. Haggerty GM, Bowman RS (1994) Environ Sci Technol 28(3):452

    Article  PubMed  CAS  ADS  Google Scholar 

  7. Hsing-Cheng Lu, Chang Juu-En, Chen Hung-Ta, Vong Weng-Wa, Chen Ying-Liang (2011) J Phys Sci 6(4):855

    Google Scholar 

  8. Mier MV, Callejas RL, Gehr R, Cisneros BEJ, Alvarez PJJ (2001) Water Res 35(2):373

    Article  Google Scholar 

  9. Faghihian H, Nejati-Yazdinejad M (2011) Iran J Chem Chem Eng 30(2):15

    CAS  Google Scholar 

  10. Elizondo NV, Ballesteros E, Kharisov BI (2000) Appl Radiat Isotopes 52:27

    Article  CAS  Google Scholar 

  11. Abusafa A, Yucel H (2002) Purif Technol 28:103

    Article  CAS  Google Scholar 

  12. Rodriguez-Fuentes G, de Ménorval LC, Reguera E, Chávez Rivas F (2008) Microsporuous Mesoporous Mater 111:577

    Article  CAS  Google Scholar 

  13. Marco JF, Garcia M, Gancedo JR (1995) Hyperfunct Inter 95:53

    Article  CAS  ADS  Google Scholar 

  14. Gonzalez-Olmos R, Holzer F, Kopinke FD, Georgi A (2011) Appl Catal A: General 398:44

    Article  CAS  Google Scholar 

  15. Matik M, Václavíková M, Šepelák V (2010) Diffus Fundam 12:86

    Google Scholar 

  16. Chen F, Li Y, Cai W, Zhang J (2010) Hazard Mater 177:743

    Article  CAS  Google Scholar 

  17. Wang W, Zhou M, Mao Q, Yue J, Wang X (2010) Communications 11:937

    CAS  Google Scholar 

  18. Burt TA, Li Z, Bowman RS (2005) J Environ Eng 131(6):934

    Article  CAS  Google Scholar 

  19. Tao X, Zhang P, Bowman RS (2003) In: Proceedings of the 2003 International Symposium on Water Resources and the Urban Environment

  20. Zhang P, Tao X, Li Z, Bowman RS (2002) Environ Sci Technol 36(16):3597

    Article  PubMed  CAS  ADS  Google Scholar 

  21. Li Z, Jones HK, Bowman RS, Helferich R (1999) Environ Sci Technol 33(23):4326

    Article  CAS  ADS  Google Scholar 

  22. Russo AV, Toriggia LF, Bercoff PG, Jacobo SE (2011) Solid catalysts for benzene degradation: iron and magnetite nanoparticles. SAM/CONAMET ISBN 987-27308-0-2

  23. Shen J, Li Z, Yan Q, Chen Y (1993) J Phys Chem 97:8504

    Article  CAS  Google Scholar 

  24. Vogel (1980) A Textbook of quantitative inorganic analysis 3rd edn. Longman, London, p 294

    Google Scholar 

  25. Rodriguez-Fuentes G, de Ménorval LC, Reguera E, Chávez Rivas F (2008) Microporuous Mesoporous Mater 111:577

    Article  CAS  Google Scholar 

  26. Fischer RB and Peters DG (1968) Quantitative chemical analysis. Saunders, Philadelphia p 12

  27. Koyama K, Takeuchi Y (1997) Z Kristallogr 145:216

    Article  Google Scholar 

  28. Triwahyuni ET, Arryanto Y, Setiadji B, Webb J, Chua-Anusorn W. (2000) Synthesis of iron oxide nanoparticles in/on zeolite-Y structure. Adsorp Sci Technol 653

  29. Concepción-Rosabal B, Rodriguez-Fuentes G, Simón-Carballo R (1997) Zeolites 19:47

    Article  Google Scholar 

  30. Weidenthaler C, Zibrowius B, Schimanke J, Mao Y, Mienert B, Bill E, Schmidt W (2005) Microporous Mesoporous Mater 84:302

    Article  CAS  Google Scholar 

  31. Roque-Malherbe R, Diaz-Aguila C, Reguera-Ruiz E, Fundora-Lliteras J, López-Colado L, Hernández-Vélez M (1990) Zeolites 10(7):685

    Article  CAS  Google Scholar 

  32. Lázár K, Beyer HK, Onyestyák G, Jönsson B, Varga LK, Pronier S (1999) Nanostruct Mater 12:155

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Bibiana Arcondo for Mössbauer measures and Gustavo Panizza from DIATEC S.R.L. for zeolite provision. This project was supported by UBACyT (2011–2014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia E. Jacobo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 2258 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Russo, A.V., Toriggia, L.F. & Jacobo, S.E. Natural clinoptilolite–zeolite loaded with iron for aromatic hydrocarbons removal from aqueous solutions. J Mater Sci 49, 614–620 (2014). https://doi.org/10.1007/s10853-013-7741-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7741-7

Keywords

Navigation