Skip to main content

Advertisement

Log in

Insight into the nucleating and reinforcing efficiencies of carbon nanofillers in poly(vinylidene fluoride): a comparison between carbon nanotubes and carbon black

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Poly(vinylidene fluoride) (PVDF) nanocomposites containing homogeneously dispersed multi-walled carbon nanotubes (MWCNTs) and carbon black (CB) were fabricated by a small melt mixer. The uniform dispersion of the nanofillers in PVDF was confirmed by both scanning electron microscopy and transmission electron microscopy. Both the heterogeneous nucleation efficiency and crystallization half-time show that MWCNTs exhibit higher nucleation efficiency than CB for the crystallization of PVDF. Meanwhile, MWCNTs show greater contribution to the reinforcement of the storage modulus of PVDF as revealed by dynamic mechanical analysis, especially at low temperatures. However, the enhancement of the storage modulus in the melt state is reversed due to the network formed by serious agglomeration of CB. This study provides some insights into the nucleating and reinforcing efficiency of MWCNTs and CB in polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Grady BP (2012) J Polym Sci, Part B 50:591

    Article  CAS  Google Scholar 

  2. Li LY, Li CY, Ni CY, Rong LX, Hsiao B (2007) Polymer 48:3452

    Article  CAS  Google Scholar 

  3. Gao Y, Wang Y, Shi J, Bai HW, Song B (2008) Polym Test 27:179

    Article  CAS  Google Scholar 

  4. Shan GF, Gong X, Chen WP, Chen L, Zhu MF (2011) Colloid Polym Sci 289:1005

    Article  CAS  Google Scholar 

  5. Huang XY, Jiang PK, Kim C, Liu F, Yin Y (2009) Eur Polym J 45:377

    Article  CAS  Google Scholar 

  6. Phang IY, Ma JH, Shen L, Liu TX, Zhang WD (2006) Polym Int 55:71

    Article  CAS  Google Scholar 

  7. Liu LY, Li CY, Ni CY (2006) J Am Chem Soc 128:1692

    Article  Google Scholar 

  8. Li LY, Li B, Hood MA, Li CY (2009) Polymer 50:953

    Article  CAS  Google Scholar 

  9. Yin CL, Liu ZY, Yang W, Yang MB, Feng JM (2009) Colloid Polym Sci 287:615

    Article  CAS  Google Scholar 

  10. He LH, Xu Q, Hua CW, Song R (2010) Polym Compos 31:921

    CAS  Google Scholar 

  11. Xu JZ, Chen T, Yang CL, Li ZM, Mao YM, Zeng BQ, Hsiao B (2010) Macromolecules 43:5000

    Article  CAS  Google Scholar 

  12. Papageorgious GZ, Achilias DS, Nanaki S, Beslikas T, Bikiaris D (2010) Thermochim Acta 511:129

    Article  Google Scholar 

  13. Chen HM, Chen J, Shao LN, Yang JH, Huang T, Zhang N, Wang Y (2013) J Polym Sci, Part B 51:183

    Article  CAS  Google Scholar 

  14. Shi XM, Wang JD, Jiang BB, Yang YR (2013) J Appl Polym Sci 128:3609

    Article  CAS  Google Scholar 

  15. Xie XL, Mai YW, Zhou XP (2005) Mater Sci Eng, R 49:89

    Article  Google Scholar 

  16. Gojny FH, Wichmann MHG, Fiedler B, Schulte K (2005) Compos Sci Technol 65:2300

    Article  CAS  Google Scholar 

  17. Coleman JN, Khan U, Blau WJ, Gun’ko YK (2006) Carbon 44:1624

    Article  CAS  Google Scholar 

  18. Thostenson ET, Chou TW (2003) J Phys D Appl Phys 36:573

    Article  CAS  Google Scholar 

  19. Martone A, Faiella G, Antonucci V, Giordano M, Zarrelli M (2011) Compos Sci Technol 71:1117

    Article  CAS  Google Scholar 

  20. Loos MR, Zloczower IM (2012) Macromol Theor Simul 21:130

    Article  CAS  Google Scholar 

  21. Liu H, Brinson LC (2008) Compos Sci Technol 68:1502

    Article  CAS  Google Scholar 

  22. Chatterjee S, Nuesch FA, Chu BTT (2011) Nanotechnology 22:275714

    Article  CAS  Google Scholar 

  23. Malik TM, Carreau PJ, Grmela M, Dufresne A (1988) Polym Eng Sci 9:412

    CAS  Google Scholar 

  24. Kaynak A, Polat A, Yilmazer U (1996) Mater Res Bull 31:1195

    Article  CAS  Google Scholar 

  25. Huang JC, Wu CL (2000) Adv Polym Technol 19:132

    Article  CAS  Google Scholar 

  26. Mather PJ, Thomas KM (1997) J Mater Sci 32:401. doi:10.1023_A_1018557501174

    Article  CAS  Google Scholar 

  27. Falco AD, Goyanes S, Rubiolo GH, Mondragon I, Marzocca A (2007) Appl Surf Sci 254:262

    Article  Google Scholar 

  28. Zhou XW, Zhu YF, Li J (2007) Mater Res Bull 42:456

    Article  CAS  Google Scholar 

  29. Nah C, Lim JY, Cho BH, Hong CK, Gent AN (2010) J Appl Polym Sci 118:1574

    CAS  Google Scholar 

  30. Saatchi MM, Shojaei A (2011) Mater Sci Eng, A 528:7161

    Article  CAS  Google Scholar 

  31. Zhang MQ, Rong MZ, Zhang ZW (2004) J Mater Sci 39:5617. doi:10.1023_B_JMSC.0000039303.68819.68

    Article  CAS  Google Scholar 

  32. Huang JC (2002) Adv Polym Technol 21:299

    Article  CAS  Google Scholar 

  33. Li WJ, Meng QJ, Zheng YS, Zhang ZC, Xia WM, Xu Z (2010) Appl Phys Lett 96:192905

    Article  Google Scholar 

  34. Ueberschlag P (2001) Sensor Rev 21:118

    Article  Google Scholar 

  35. Kim GH, Hong SM, Seo YS (2009) Phys Chem Chem Phys 44:10506

    Article  Google Scholar 

  36. Salimi A, Yousefi AA (2003) Polym Test 22:699

    Article  CAS  Google Scholar 

  37. Sun LL, Li B, Zhang ZG, Zhong WH (2010) Eur Polym J 46:2112

    Article  CAS  Google Scholar 

  38. Patro TU, Mhalgi MV, Khakhar DV, Misra A (2008) Polymer 49:3486

    Article  CAS  Google Scholar 

  39. Ma WZ, Wang XL, Zhang J (2010) J Polym Sci, Part B 48:2154

    Article  CAS  Google Scholar 

  40. Ma WZ, Wang XL, Zhang J (2011) J Therm Anal Calorim 103:319

    Article  CAS  Google Scholar 

  41. Tang XG, Hou M, Ge L, Zou J, Truss R, Yang W, Yang MB, Zhu ZH, Bao RY (2012) J Appl Polym Sci 125:E592

    Article  CAS  Google Scholar 

  42. Yang JH, Chen QY, Chen F, Zhang Q, Wang K, Fu Q (2011) Nanotechnology 22:355707

    Article  Google Scholar 

  43. Ke K, Wang Y, Yang W, Xie BH, Yang MB (2012) Polym Test 31:117

    Article  CAS  Google Scholar 

  44. Ke K, Wang Y, Zhang K, Luo Y, Yang W, Xie BH, Yang MB (2012) J Appl Polym Sci 125:E49

    Article  CAS  Google Scholar 

  45. Ke K, Wang Y, Liu XQ, Cao J, Luo Y, Yang W, Xie BH, Yang MB (2012) Compos Part B 43:1425

    Article  CAS  Google Scholar 

  46. Ke K, Wang Y, Luo Y, Yang W, Xie BH, Yang MB (2012) Compos Part B 43:3281

    Article  CAS  Google Scholar 

  47. Chrissafis K, Antoniadis G, Paraskevopoulos KM, Vassiliou A, Bikiaris DN (2007) Compos Sci Technol 67:2165

    Article  CAS  Google Scholar 

  48. Sun L, Yang JT, Lin GY, Zhong MQ (2007) Mater Lett 61:3961

    Google Scholar 

  49. Ke K, Wang Y, Yang W, Xie BH, Yang MB (2011) J Mater Sci 46:1542. doi:10.1007/s10853-010-4959-5

    Article  CAS  Google Scholar 

  50. Kasaliwal G, Villmow T, Pegel S, Pötschke P (2011) In: McNally T, Pötschke P (eds) Polymer-carbon nanotube composites: preparation, properties and application, 1st edn. Woodhead, Cambridge, p 92

    Chapter  Google Scholar 

  51. Esawi AMK, Salem HG, Hussein HM, Ramadan AR (2010) Polym Compos 31:772

    CAS  Google Scholar 

  52. Fillon B, Lotz B, Thierry A, Wittmann JC (1993) J Polym Sci, Part B 31:1395

    Article  CAS  Google Scholar 

  53. Laird ED, Li CY (2013) Macromolecules 46:2877

    Article  CAS  Google Scholar 

  54. Schneider S, Drujon X, Lotz B, Wittmann JC (2001) Polymer 42:8787

    Article  CAS  Google Scholar 

  55. Marega C, Marigo A (2003) Eur Polym J 39:1713

    Article  CAS  Google Scholar 

  56. Xu DH, Wang ZG (2008) Polymer 49:330

    Article  CAS  Google Scholar 

  57. Cebe P, Hong SD (1986) Polymer 27:1183

    Article  CAS  Google Scholar 

  58. Avrami M (1939) J Chem Phys 7:1103

    Article  CAS  Google Scholar 

  59. Pötschke P, Fornes TD, Paul DR (2002) Polymer 43:3247

    Article  Google Scholar 

  60. Mahmoud A-G, Pötschke P (2005) J Non-Newton Fluid 128:2

    Article  Google Scholar 

  61. Hu GJ, Zhao CG, Zhang SM, Yang MS, Wang ZG (2006) Polymer 47:480

    Article  CAS  Google Scholar 

  62. Huang SL, Liu ZY, Yin CL, Wang Y, Gao YJ, Yang MB (2011) Colloid Polym Sci 289:1927

    Article  CAS  Google Scholar 

  63. Huang SL, Liu ZY, Yin CL, Wang Y, Gao YJ, Chen C, Yang MB (2011) Colloid Polym Sci 289:1673

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of the Special Funds for Major Basic Research (Nos. 2011CB606006, 2012CB025902), National Natural Science Foundation of China (Nos. 51121001 and 51073109) and the Fundamental Research Funds for the Central Universities (No. 2011SCU04A03). The authors also thank Mr. Chao-liang Zhang for his kind assistance in morphological observations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ke, K., Bao, RY., Liu, XQ. et al. Insight into the nucleating and reinforcing efficiencies of carbon nanofillers in poly(vinylidene fluoride): a comparison between carbon nanotubes and carbon black. J Mater Sci 48, 8509–8519 (2013). https://doi.org/10.1007/s10853-013-7669-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7669-y

Keywords

Navigation