Skip to main content
Log in

Sensitivity of gold nano-conductors to common contaminations: ab initio results

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Gold nanowire chains are considered a good candidate for nanoelectronic devices because they exhibit remarkable structural and electrical properties. A previous study shows that the beryllium-terminated BeO (0001) surface may be a useful platform for supporting nano gold conductors, since it preserves the nano-wire configuration, does not restrict its conductivity, and even enhances it. However, the influence of contamination on the conductivity of such conductors is unknown. Here, ab initio simulations were performed to determine the effect of commonly adsorbed contaminants (H2O and O2) on the conductivity of gold nano-conductors. We found that the presence of adsorbed impurities does not alter the good conductive ability of the conductors under examination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. Commercial software is identified to specify procedures. Such identification does not imply recommendation by the National Institute of Standards and Technology.

References

  1. Schulz M (1999) Nature 399:729

    Article  CAS  Google Scholar 

  2. Lundstrom M (2003) Science 299:210

    Article  CAS  Google Scholar 

  3. Leong M, Doris B, Kedzierski J, Rim K, Yang M (2004) Science 306:2057

    Article  Google Scholar 

  4. Yanson IK, Shklyarevskii OI, Csonka S, van Kempen H, Speller S, Yanso AI, van Ruitenbeek JM (2005) Phys Rev Lett 95:256806

    Article  CAS  Google Scholar 

  5. Kiguchi M, Konishi T, Murakoshi K (2006) Phys Rev B 73:125406

    Article  Google Scholar 

  6. Suzuki R, Tsutsui M, Miura D, Kurokawa S, Sakai A (2007) Jpn J Appl Phys 46:3694

    Article  CAS  Google Scholar 

  7. Kizuka T (2008) Phys Rev B 77:155401

    Article  Google Scholar 

  8. Oshima Y, Kurui Y, Takayanagi K (2010) J Phys Soc Jpn 79:054702

    Article  Google Scholar 

  9. Scheer E et al (1998) Nature 394:154

    Article  CAS  Google Scholar 

  10. Kurui Y, Oshima Y, Okamoto M, Takayanagi K (2009) Phys Rev B 79:165414

    Article  Google Scholar 

  11. Smit RHM, Untiedt C, Rubio-Bollinger G, Segers RC, van Ruitenbeek JM (2003) Phys Rev Lett 91:076805

    Article  CAS  Google Scholar 

  12. Dreher M, Pauly F, Heurich J, Cuevas JC, Scheer E, Nielaba P (2005) Phys Rev B 72:75435

    Article  Google Scholar 

  13. Ohnishi H, Kondo Y, Takayanagi K (1998) Nature 395:780

    Article  CAS  Google Scholar 

  14. Tavazza F, Levine LE, Chaka AM (2009) J Appl Phys 106:43522

    Article  Google Scholar 

  15. Agraıt N, Yeyati AL, van Ruitenbeek JM (2003) Phys Rep 377:81

    Article  Google Scholar 

  16. Agraıt N, Rubio G, Vieira S (1995) Phys Rev Lett 74:3995

    Article  Google Scholar 

  17. Rubio-Bollinger G, Joyez P, Agraıt N (2004) Phys Rev Lett 93:11680

    Article  Google Scholar 

  18. Nitzan A, Ratner MA (2003) Science 300:1384

    Article  CAS  Google Scholar 

  19. Qian Z, Li R, Hou S, Xue Z, Sanvito S (2007) J Chem Phys 127:194710

    Article  Google Scholar 

  20. Brandbyge M, Mozoz JL, Ordejon P, Taylor J, Stokbro K (2002) Phys Rev B 65:165401

    Article  Google Scholar 

  21. Fujimoto Y, Hirose K (2003) Phys Rev B 67:195315

    Article  Google Scholar 

  22. Lee YJ et al (2004) Phys Rev B 69:125409

    Article  Google Scholar 

  23. Zhuang M, Ernzerhof M (2004) J Chem Phys 120:4921

    Article  CAS  Google Scholar 

  24. Barzilai S, Tavazza F, Levine LE (2013) Model Simul Mater Sci Eng 21:25004

    Article  Google Scholar 

  25. Ke L et al (2007) Nanotechnology 18:095709

    Article  Google Scholar 

  26. Grigoriev A, Skorodumova NV, Simak SI, Wendin G, Johansson B, Ahuja R (2006) Phys Rev Lett 97:236807

    Article  CAS  Google Scholar 

  27. Tavazza F, Levine LE, Chaka AM (2010) Phys Rev B 81:235424

    Article  Google Scholar 

  28. Nilius N, Wallis TM, Ho M (2002) Science 297:1853

    Article  CAS  Google Scholar 

  29. Nilius N, Wallis TM, Ho M (2005) Appl Phys Rev A 80:951

    Article  CAS  Google Scholar 

  30. Nilius N, Wallis TM, Persson M, Ho M (2003) Phys Rev Lett 90:196103

    Article  CAS  Google Scholar 

  31. Calzolari A, Cavazzoni C, Nardelli MB (2004) Phys Rev Lett 93:96404

    Article  Google Scholar 

  32. Sashin VA, Bolorizadeh MA, Kheifets AS, Ford MJ (2003) J Phys Condens Matter 15:3567

    Article  CAS  Google Scholar 

  33. Slack GA (1973) J Phys Chem Solids 34:321

    Article  CAS  Google Scholar 

  34. Barzilai S, Tavazza F, Levine LE (2013) Surf Sci 609:39

    Article  CAS  Google Scholar 

  35. Barzilai S, Tavazza F, Levine L (2013) Model Simul Mater Sci (in review)

  36. Delley B (1990) J Chem Phys 92:508

    Article  CAS  Google Scholar 

  37. Delley B (2000) J Chem Phys 113:7756

    Article  CAS  Google Scholar 

  38. Perdew JP, Burke S, Ernzerhof M (1996) Phys Rev Lett 77:3865

    Article  CAS  Google Scholar 

  39. Delley B (2002) Phys Rev B 66:155125

    Article  Google Scholar 

  40. Pulay P, Fogarasi G (1992) J Chem Phys 96:2856

    Article  CAS  Google Scholar 

  41. Baker J, Kessi A, Delley B (1996) J Chem Phys 5:192

    Article  Google Scholar 

  42. Datta S (1995) Electron transport in mesoscopic systems. Cambridge University Press, Cambridge, MA

    Book  Google Scholar 

  43. Perdew JP, Zunger A (1981) Phys Rev B 23:5048

    Article  CAS  Google Scholar 

  44. Soler JM, Artacho E, Gale JD, Garc’ia A, Junquera J, Ordej’on P, S’anchez D (2002) J Phys Condens Mater 14:2745

    Article  CAS  Google Scholar 

  45. Atomistix ToolKit (2012) version 12.02, QuantumWise A/S

  46. Taylor J, Guo H, Wang J (2001) Phys Rev B 63:245407

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Barzilai.

Additional information

S. Barzilai is on sabbatical leave from the Nuclear Research Center NEGEV.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barzilai, S., Tavazza, F. & Levine, L.E. Sensitivity of gold nano-conductors to common contaminations: ab initio results. J Mater Sci 48, 6619–6624 (2013). https://doi.org/10.1007/s10853-013-7460-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7460-0

Keywords

Navigation